Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Chem Inf Model ; 64(7): 2445-2453, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37903033

ABSTRACT

miRNAs (microRNAs) target specific mRNA (messenger RNA) sites to regulate their translation expression. Although miRNA targeting can rely on seed region base pairing, animal miRNAs, including human miRNAs, typically cooperate with several cofactors, leading to various noncanonical pairing rules. Therefore, identifying the binding sites of animal miRNAs remains challenging. Because experiments for mapping miRNA targets are costly, computational methods are preferred for extracting potential miRNA-mRNA fragment binding pairs first. However, existing prediction tools can have significant false positives due to the prevalent noncanonical miRNA binding behaviors and the information-biased training negative sets that were used while constructing these tools. To overcome these obstacles, we first prepared an information-balanced miRNA binding pair ground-truth data set. A miRNA-mRNA interaction-aware model was then designed to help identify miRNA binding events. On the test set, our model (auROC = 94.4%) outperformed existing models by at least 2.8% in auROC. Furthermore, we showed that this model can suggest potential binding patterns for miRNA-mRNA sequence interacting pairs. Finally, we made the prepared data sets and the designed model available at http://cosbi2.ee.ncku.edu.tw/mirna_binding/download.


Subject(s)
MicroRNAs , Animals , Humans , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Algorithms , Computational Biology/methods
2.
Antioxidants (Basel) ; 12(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38136179

ABSTRACT

In this paper, the seeds and rinds of passion fruit, which are the agricultural waste of juice processing, were recycled to investigate their biological activities for sustainable use. De-oiled seed powders (S) were successively extracted by refluxing 95% ethanol (95E), 50E, and hot water (HW), respectively, to obtain S-95EE, S-50EE, and S-HWE. Dried rind powders were successively extracted by refluxing HW and 95E to obtain rind-HWE and rind-95EE, respectively. S-50EE and S-95EE showed the most potent extracts, such as anti-amyloid-ß1-42 aggregations and anti-acetylcholinesterase inhibitors, and they exhibited neuroprotective activities against amyloid-ß25-35-treated or H2O2-treated SH-SY5Y cells. Scirpusin B and piceatannol were identified in S-95EE, S-50EE, and rind-HWE, and they showed anti-acetylcholinesterase activity at 50% inhibitory concentrations of 62.9 and 258.9 µM, respectively. Daily pretreatments of de-oiled seed powders and rind-HWE (600 mg/kg), S-95EE, and S-50EE (250 mg/kg) or scirpusin B (40 mg/kg) for 7 days resulted in improved learning behavior in passive avoidance tests and had significant differences (p < 0.05) compared with those of the control in scopolamine-induced ICR mice. The seeds and rinds of passion fruit will be recycled as materials for the development of functional foods, promoting neuroprotection and delaying the onset of cognitive dysfunctions.

3.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37765066

ABSTRACT

The marine sponge Lendenfeldia sp., collected from the Southern waters of Taiwan, was subjected to chemical composition screening, resulting in the isolation of four new 24-homoscalarane compounds, namely lendenfeldaranes R-U (1-4). The structures and relative stereochemistry of the new metabolites 1-4 were assigned based on NMR studies. The absolute configurations of compounds 1-4 were determined by comparing the calculated and experimental values of specific optical rotation. The antioxidant and anti-inflammatory activities of the isolated compounds were assayed using superoxide anion generation and elastase release assays. These assays are used to determine neutrophilic inflammatory responses of respiratory burst and degranulation. Compounds 2 and 4 inhibited superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB) with IC50: 3.98-4.46 µM. Compounds 2 and 4 inhibited fMLP/CB-induced elastase release, with IC50 values ranging from 4.73 to 5.24 µM. These findings suggested that these new 24-homoscalarane compounds possess unique structures and potential anti-inflammatory activity.

4.
Antioxidants (Basel) ; 12(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37507902

ABSTRACT

Currently, no drug is effective in delaying the cognitive impairment of Alzheimer's disease, which ranks as one of the top 10 causes of death worldwide. Hydroxylated stilbenes are active compounds that exist in fruit and herbal plants. Piceatannol (PIC) and gnetol (GNT), which have one extra hydroxyl group in comparison to resveratrol (RSV), and rhapontigenin (RHA) and isorhapontigenin (isoRHA), which were metabolized from PIC in vivo and contain the same number of hydroxyl groups as RSV, were evaluated for their effects on Alzheimer's disease-associated factors in vitro and in animal experiments. Among the five hydroxylated stilbenes, PIC was shown to be the most active in DPPH radical scavenging and in inhibitory activities against acetylcholinesterase and amyloid-ß peptide aggregations, with concentrations for half-maximal inhibitions of 40.2, 271.74, and 0.48 µM. The different interactions of the five hydroxylated stilbenes with acetylcholinesterase or amyloid-ß were obtained by molecular docking. The scopolamine-induced ICR mice fed with PIC (50 mg/kg) showed an improved learning behavior in the passive avoidance tests and had significant differences (p < 0.05) compared with those in the control group. The RHA and isoRHA at 10 µM were proven to stimulate neurite outgrowths in the SH-SY5Y cell models. These results reveal that nutraceuticals or functional foods containing PIC have the potential for use in the treatment of neurodegenerative disorders.

5.
J Ethnopharmacol ; 283: 114732, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34637967

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Duhuo Jisheng Decoction (DHJSD) is the most frequently prescribed herbal formula for the treatment of osteoporosis. However, efficacy and safety of DHJSD add-on bisphosphonate medications remain unclear. AIM OF THE STUDY: The purpose of this study was to reveal efficacy and safety of DHJSD add-on bisphosphonate medications in patients with osteoporosis through a systematic review with meta-analysis of randomized controlled trials (RCTs). METHODS: Five important databases were searched for RCTs on this topic, and two authors individually extracted information and data concerning study design, baseline characteristics, efficacy rate, bone mineral density (BMD), pain score, and adverse event. Meta-analysis was done mainly with risk ratio (RR) and standardized mean difference (SMD) for BMD and pain, using random-effects model; while Peto odds ratios (PORs) were used for pooling adverse event rates due to sparse data. Point estimate was reported with 95% confidence intervals (CIs). RESULTS: Seventeen RCTs (n = 1526) met eligibility criteria, and were included in this synthesis. Pooled estimates demonstrated that as compared with no DHJSD, DHJSD-B led to significantly higher efficacy rates (RR = 1.25, 95%CI: 1.19-1.31; I2 = 0%), more lumbar BMD (SMD = 0.61, 95%CI: 0.25-0.96; I2 = 20%), lower pain score (SMD = -1.10, 95%CI: 1.40-0.79; I2 = 33%), and lower overall adverse event rates (POR = 0.40; 95%CI: 0.20-0.97; I2 = 27%). CONCLUSION: Adding DHJSD on bisphosphonate medications seems to be an effective and safe strategy in treating patients with osteoporosis.


Subject(s)
Diphosphonates/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Osteoporosis/drug therapy , Bone Density/drug effects , Diphosphonates/adverse effects , Drug Therapy, Combination , Drugs, Chinese Herbal/adverse effects , Humans , Randomized Controlled Trials as Topic
6.
Article in English | MEDLINE | ID: mdl-34574518

ABSTRACT

Inter-set peripheral cooling can improve high-intensity resistance exercise performance. However, whether foot cooling (FC) would increase 1 repetition maximum (RM) lower-limb strength is unclear. This study investigated the effect of intermittent FC on 1 RM leg press strength. Ten recreational male lifters performed three attempts of 1 RM leg press with FC or non-cooling (NC) in a repeated-measures crossover design separated by 5 days. FC was applied by foot immersion in 10 °C water for 2.5 min before each attempt. During the 1 RM test, various physiological measures were recorded. The results showed that FC elicited higher 1 RM leg press strength (Δ [95% CI]; Cohen's d effect size [ES]; 13.6 [7.6-19.5] kg; ES = 1.631) and electromyography values in vastus lateralis (57.7 [8.1-107.4] µV; ES = 0.831) and gastrocnemius (15.1 [-3.1-33.2] µV; ES = 0.593) than in NC. Higher arousal levels (felt arousal scale) were found in FC (0.6 [0.1-1.2]; ES = 0.457) than in NC. In conclusion, the preliminary findings, although limited, suggest intermittent FC has a potential ergogenic role for recreational athletes to enhance maximal lower-limb strength and may partly benefit strength-based competition events.


Subject(s)
Leg , Resistance Training , Humans , Male , Muscle Strength , Muscle, Skeletal , Pilot Projects , Quadriceps Muscle , Weight Lifting
7.
Front Pharmacol ; 12: 670254, 2021.
Article in English | MEDLINE | ID: mdl-34349644

ABSTRACT

Bone remodeling, a dynamic process in which bone formation by osteoblast is preceded by bone resorption by osteoclast, is a vital physiological process for maintaining bone mass and strength, imbalances in which could precipitate osteoporosis. Due to the unilateral mechanism of the existing bone remodeling drugs, identifying compounds that could regulate the balance between osteoclast and osteoblast could improve the treatment of osteoporosis. Here, we show that compounds isolated from Wikstroemia taiwanensis modulate osteoclast and osteoblast activities. Specifically, astragalin (1) and kaempferol 3-O-ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside (2), besides increasing mineral deposition, increased alkaline phosphatase activity (137.2% for 1 and 115.8% for 2) and ESR-α expression (112.8% for 1 and 122.5% for 2) in primary human osteoblasts. In contrast, compounds 1, 2, 3, and 5 inhibited tartrate-resistant acid phosphatase (TRAP) activity in receptor activator of nuclear factor-κB ligand-induced osteoclasts by 40.8, 17.1, 25.9, and 14.5% and also decreased the number of TRAP-positive cells by 51.6, 26.8, 20.5, and 18.6%, respectively. Our findings, therefore, showed that compounds isolated from W. taiwanensis could increase osteoblast activity while simultaneously decreasing osteoclast activity, and hence, warrant further evaluation for development as anti-osteoporosis agents.

8.
Article in English | MEDLINE | ID: mdl-34976095

ABSTRACT

Cinnamon (Cinnamomum cassia) is a well-known traditional Chinese medicine used to treat nocturia by tonifying and warming the kidney. Our recent clinical study found that overactive bladder (OAB) patients treated with cinnamon powder (CNP) patches exhibited significantly ameliorated OAB symptoms without significant side effects, but the mechanism of action is unclear. To explore the beneficial effects and action mechanisms of CNP and its major active component cinnamaldehyde (CNA) in an OAB-related murine model, cyclophosphamide- (CYP-) induced OAB injury was performed on male ICR mice in the presence or absence of CNP and CNA, as well as solifenacin, a clinical drug for OAB as a reference. Twenty-four-hour micturition patterns (frequency of urination and volume of urine per time), as well as histopathological examination, immunohistochemistry (IHC), and Western blotting of the bladder, were analyzed for mechanism elucidation. Administration of CYP (300 mg/kg, i.p.) induced typical OAB pathophysiological changes, including increased frequency of urination and reduced volume of urine. CYP-induced mice displayed strong edema of the bladder and hemorrhagic cystitis, accompanied by loss of normal corrugated folds and decreased muscarinic receptors (M2/M3) in the urothelium, and disordered/broken structures of the lamina propria and detrusor. These changes were correlated with increased leukocyte (CD11b) infiltration colocalized with inflammatory (pp65 NFκB, macrophage migration inhibitory factor (MIF)/Toll-like receptor 4 (TLR4)) and fibrotic (stem cell factor (SCF)/c-Kit, α-smooth muscle actin (α-SMA)/ß-catenin) signals. Treatment with CNP (600 mg/kg, p.o.) and CNA (10-50 mg/kg, p.o.), but not solifenacin (50 mg/kg), 30 min after CYP induction significantly ameliorated CYP-induced dysfunction in micturition patterns and pathophysiological changes. CNP and CNA further suppressed MIF/TLR4-associated inflammatory and SCF/c-Kit-related fibrotic signaling pathways. Our findings indicate that suppression of inflammatory and fibrotic signals contributes to the crucial mechanism in the improvement of CYP-induced OAB by CNP and CNA.

9.
Phytomedicine ; 80: 153380, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33091856

ABSTRACT

BACKGROUND: Current treatments for overactive bladder (OAB) have limited efficacy, low persistence and a high rate of adverse events commonly leading to treatment cessation in clinical practice. Clinicians in Asia commonly use traditional Chinese medicine as an alternative for OAB treatment despite it having uncertain efficacy and safety. To evaluate the efficacy and safety of cinnamon patch (CP) treatment for alleviating symptoms of OAB, a double-blind randomized, placebo-controlled trial was conducted in the present study. MATERIALS AND METHODS: In this 6-week randomized clinical trial conducted in an outpatient setting, 66 subjects diagnosed as having OAB were enrolled and treated with a placebo (n=33) or CP (n=33). The OAB symptom score (OABSS) was selected as the primary end point, and a patient perception of bladder condition (PPBC), an urgency severity scale (USS), and post-voiding residual urine (PVR) volume were selected as secondary end points. Statistical analyses were performed with IBM SPSS Statistics 20. Groups were compared using an independent sample t-test, Fisher exact test, and Chi-squared test. RESULTS: In total, 66 participants (40 women and 26 men), 60.35 ± 12.77 years of age, were included in the intention-to-treat analyses. Baseline characteristics were comparable between the CP (n ==33) and placebo (n ==33) groups. Treatment with a CP showed statistically significant differences in reductions in OABSS scores (9.70 ± 2.20 to 6.33 ± 2.42), PPBC scores (3.36 ± 0.60 to 2.15 ± 0.83), and USS scores (2.67 ± 0.54 to 1.64 ± 0.60). CONCLUSIONS: Compared to a placebo, treatment with CP might be considered an effective and safe complementary therapy for OAB. Further studies employing a positive control, different dosage forms, larger sample sizes, and longer treatment periods are warranted.


Subject(s)
Acupuncture Points , Cinnamomum zeylanicum , Urinary Bladder, Overactive/therapy , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Placebos , Treatment Outcome , Urinary Bladder, Overactive/etiology
10.
J Ethnopharmacol ; 264: 113126, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32763416

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Postmenopausal osteoporosis is a major bone health issue worldwide. There is an unmet medical need for osteoporosis treatments, a disease which disproportionately impacts women. Exploring botanicals to prevent or treat osteoporosis is currently an interest of investigations. Rhizomes of Davallia mariesii T. Moore ex Baker (Davalliacea) are used an indigenous herbal medicine in Asia for injuries due to fractures, contusions, and strains. AIM OF THE STUDY: In the present study, we investigated the osteogenic effect of the water extract of rhizomes of D. mariesii (DMH) on bone loss induced by an ovariectomy (OVX) in mice and also its impact on osteogenesis in primary human osteoblasts (HObs). Additionally, we performed a quantitative analysis of compounds in the DMH extract. MATERIALS AND METHODS: OVX C57BL/6J mice were orally administrated DMH extract for 12 weeks, and microarchitecture parameters were examined by microcomputed tomography. DMH extract was fractionated in a bio-guided manner, and fractions were isolated to obtain active compounds using HObs. Cell viability was evaluated by an MTT assay. Characteristics of early and late osteogenesis were analyzed by alkaline phosphatase activity and a mineralization assay. Molecular mechanisms were explored by a real-time quantitative PCR. Compounds in the DMH extract were identified and quantified using liquid chromatography tandem mass spectroscopy (LC-MS/MS). RESULTS: DMH improved bone mineral densities of vertebrae and the femur. Through microarchitectural observations, DMH significantly decreased the bone surface/volume ratio and trabecular separation, and also increased the connectivity density in the OVX group. Additionally, DMH inhibited osteoclast differentiation in receptor activator of nuclear factor-κB ligand-induced osteoclasts and increased bone formation in HObs. After bio-guided fractionation and isolation, we found that eriodictyol-7-O-ß-d-glucuronide (2) significantly increased alkaline phosphatase activity, and 5-O-ß-d-(6-O-vanilloylglucopyranosyl)gentisic acid (3) substantially enhanced mineral deposition. In HObs, compound 3 was more potent in upregulating expressions of bone morphogenetic protein-2, bone sialoprotein, osteopontin, osterix, and estrogen receptor-α. The amount of bioactive compound 3 in DMH was 5.68 ±â€¯0.64 mg/g of dry weight according to LC-MS/MS. CONCLUSION: For the first time we report that D. mariesii and its isolated compounds demonstrated potent osteogenic activities. Quantitative results of D. mariesii could be a reference for phytochemical analyses.


Subject(s)
Osteoblasts/drug effects , Osteogenesis/drug effects , Osteoporosis/drug therapy , Plant Extracts/therapeutic use , Plants, Medicinal , Animals , Cells, Cultured , Drug Evaluation, Preclinical/methods , Female , Humans , Mice , Mice, Inbred C57BL , Middle Aged , Osteoblasts/metabolism , Osteogenesis/physiology , Osteoporosis/diagnostic imaging , Osteoporosis/metabolism , Ovariectomy/adverse effects , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , RAW 264.7 Cells , X-Ray Microtomography/methods
11.
Saudi J Biol Sci ; 27(9): 2227-2237, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32884403

ABSTRACT

The process of bone metabolism includes catabolism of old or mature bone and anabolism of new bone, carried out by osteoclasts and osteoblasts respectively. Any imbalance in this process results in loss of bone mass or osteoporosis. Drugs available to combat osteoporosis have certain adverse effects and are unable to improve bone formation, hence identifying new agents to fulfil these therapeutic gaps is required. To expand the scope of potential agents that enhance bone formation, we identified Euonymus spraguei Hayata as a plant material that possesses robust osteogenic potential using human osteoblast cells. We isolated three compounds, syringaresinol (1), syringin (2), and (-)-epicatechin (3), from E. spraguei. Results demonstrated that syringin (2), and (-)-epicatechin (3), increased alkaline phosphatase activity significantly up to 131.01% and 130.67%, respectively; they also elevated mineral deposition with respective values of up to 139.39% and 138.33%. In addition, 2 and 3 modulated autophagy and the bone morphogenetic protein (BMP)-2 signaling pathway. Our findings demonstrated that 2 and 3 induced osteogenesis by targeting multiple pathways and therefore can be considered as potent multi-targeted drugs for bone formation against osteoporosis.

12.
Food Funct ; 11(6): 5420-5431, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32475999

ABSTRACT

Osteogenesis plays a vital role in the maintenance of bone health. Imbalances in osteogenesis influence the onset of several bone loss-associated diseases. The intake of Uraria crinita (Fabaceae) through dietary supplements is advised for childhood bone dysplasia. This botanical provides edible tonics and detoxifiers, and is also used as a folk beverage. We evaluated the osteogenic effects of a 50% ethanol extract of the root of U. crinita on primary human osteoblasts (HObs) and initiated a novel comprehensive phytochemical strategy using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for quality control of this functional food. Two isoflavones, genistein (5) and 5,7-dihydroxy-3',5'-dihydroxyisoflavone (6), increased the alkaline phosphatase activity (differentiation stage); the flavone glycoside vitexin (1), and the phenolic acid salicylic acid (2) enhanced the mineralization (mature stage). The isoflavone 2'-hydroxygenistein (4) possessed high osteogenic potential among the isolated compounds in HObs. It promoted osteogenesis-related stages and upregulated the gene expressions in a dose-dependent manner. The major compounds in the active fraction were quantitatively analyzed via phytochemical fingerprint detection. These LC-MS/MS-based phytochemical perspectives can act as reference standards in developing food supplements from U. crinita.


Subject(s)
Chromatography, Liquid/methods , Fabaceae/chemistry , Osteogenesis/drug effects , Phytochemicals/pharmacology , Tandem Mass Spectrometry/methods , Bone Diseases, Developmental/drug therapy , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Child , Female , Gene Expression , Genistein/pharmacology , Glycosides/pharmacology , Humans , Isoflavones/pharmacology , Middle Aged , Osteoblasts/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , White People
13.
J Food Drug Anal ; 28(1): 147-158, 2020 01.
Article in English | MEDLINE | ID: mdl-31883603

ABSTRACT

The incidence of neurodegeneration leading to the conditions such as Alzheimer's and Parkinson's diseases are on the increase, they require the approaches that focus on protection prevention rather than treatment. Plants are rich sources of many compounds which possess medicinal properties. We sought to investigate the neuroprotective effects of Uncariahirsuta and its compounds on d-galactose-induced stress in BALB/c mice as well as 6-hydroxydopamine (6-OHDA)-induced stress in mouse nerve growth factor (mNGF)-differentiated PC12 cells. Our results demonstrate that the 95% ethanol extract of U. hirsuta reversed the d-galactose-induced learning and memory dysfunctions and decreased the malodialdehyde levels. Furthermore, the isolated compounds, 5ß-carboxystrictosidine (1) and chlorogenic acid (2), protected mNGF-differentiated PC12 cells against toxicity induced by 6-OHDA by acting as antiapoptotic agents. The 50% inhibitory concentration (IC50) for intracellular reactive oxygen species (ROS) scavenging was found to be 24.5 (for 1) and 19.7 µM (for 2), and both 1 and 2 reduced intracellular calcium levels with respective IC50 values of 46.9 and 27 µM. Interestingly, both compounds inhibited caspase 3 and 9 activities with respective IC50 values of 25.6 and 24.5 µM for 1 and 19.4 and 16.3 µM for 2. Our results identify U. hirsuta and its active compounds as potential neuroprotective agents and deserve further evaluation for drug development for neuroprotection in the future.


Subject(s)
Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Uncaria/chemistry , Animals , Cell Survival , Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred BALB C , Oxidative Stress , Oxidopamine/toxicity , PC12 Cells , Rats , Reactive Oxygen Species/metabolism
14.
Int J Mol Sci ; 20(13)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31247918

ABSTRACT

Bone metabolism is a homeostatic process, imbalance in which leads to the onset of diseases such as osteoporosis and osteopenia. Although several drugs are currently available to treat such conditions, they are associated with severe side effects and do not enhance bone formation. Thus, identifying alternative treatment strategies that focus on enhancing bone formation is essential. Herein, we explored the osteogenic potential of Turpinia formosana Nakai using human osteoblast (HOb) cells. The plant extract was subjected to various chromatographic techniques to obtain six compounds, including one new compound: 3,3'-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1). Compounds 3,3'-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1), gentisic acid 5-O-ß-d-(6'-O-galloyl) glucopyranoside (2), strictinin (3), and (-)-epicatechin-3-O-ß-d-allopyranoside (6) displayed no significant cytotoxicity toward HOb cells, and thus their effects on various osteogenic markers were analyzed. Results showed that 1-3 and 6 significantly increased alkaline phosphatase (ALP) activity up to 120.0, 121.3, 116.4, and 125.1%, respectively. Furthermore, 1, 2, and 6 also markedly enhanced the mineralization process with respective values of up to 136.4, 118.9, and 134.6%. In addition, the new compound, 1, significantly increased expression levels of estrogen receptor-α (133.4%) and osteogenesis-related genes of Runt-related transcription factor 2 (Runx2), osteopontin (OPN), bone morphogenetic protein (BMP)-2, bone sialoprotein (BSP), type I collagen (Col-1), and brain-derived neurotropic factor (BDNF) by at least 1.5-fold. Our results demonstrated that compounds isolated from T. formosana possess robust osteogenic potential, with the new compound, 1, also exhibiting the potential to enhance the bone formation process. We suggest that T. formosana and its isolated active compounds deserve further evaluation for development as anti-osteoporotic agents.


Subject(s)
Calcification, Physiologic/drug effects , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tracheophyta/chemistry , Biomarkers , Gene Expression , Magnetic Resonance Spectroscopy , Molecular Structure , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
15.
Cancers (Basel) ; 11(3)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818855

ABSTRACT

Colorectal cancer (CRC) is the most frequently diagnosed cancer and leading cause of cancer-related deaths worldwide. Because of the use of first-line CRC treatments, such as irinotecan (IRI), is hindered by dose-limiting side effects, improved drug delivery systems may have major clinical benefits for CRC treatment. In this study, we generate and characterize liposomal irinotecan (Lipo-IRI), a lipid-based nanoparticle, which shows excellent bioavailability and pharmacokinetics. Additionally, this formulation allows IRI to be maintained in active form and prolongs its half-life in circulation compared to IRI in solution. Compared with IRI statistically, the level of prostaglandin E2 (PGE2) in colonic tissue decreases, and Bifidobacterium spp. (beneficial intestinal microbiota) content increases in the Lipo-IRI-treated group. Moreover, no damage is observed by the hematoxylin and eosin staining of the normal tissue samples from the Lipo-IRI-treated group. In a xenograft mouse model, CRC tumors shrink markedly following Lipo-IRI treatment, and mice receiving a targeted combination of Lipo-IRI and liposomal doxorubicin (Lipo-Dox) extend their survival rate significantly. Overall, our results demonstrate that this formulation of Lipo-IRI shows a great potential for the treatment of colorectal cancer.

16.
J Photochem Photobiol B ; 175: 244-253, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28917186

ABSTRACT

Ultraviolet (UV) irradiation leads to skin photoaging because of the upregulation of matrix metalloproteinase (MMP)-1 and downregulation of type I collagen and tissue inhibitor of metalloproteinase (TIMP)-1. Eriobotrya deflexa (Hemsl.) Nakai (Rosaceae) is a flowering plant endemic to Taiwan, and its leaves have been used as an expectorant and in antitussive folk remedy. Our previous studies have demonstrated that an E. deflexa leaf extract functions as a free radical scavenger. The current evaluated the antiphotoaging effect of partitioned fractions and specific compounds from the leaves of E. deflexa by using bioguided isolation, compound identification, and biological activity testing with UVB-irradiated human fibroblasts (WS-1 cells). E. deflexa leaves were extracted with 95% ethanol and then partitioned using a sequential treatment of n-hexane, ethyl acetate, and n-butanol (n-BuOH). The bioactive n-BuOH fraction was used for isolation and purification through chromatography. The compounds were identified by analyzing their physical and spectroscopic properties. We identified eight compounds from this fraction; of these compounds, 3-O-α-l-rhamnopyranosyl-(1‴→6″)-ß-d-galactopyranoside (1), hyperin (2), afzelin (5), and cryptochlorogenic acid methyl ester (7) were isolated from E. deflexa for the first time, and they exhibited MMP-1 inhibition activity. The IC50 values were 96.5, 89.5, 93.4, and 92.8µM for 1, 2, 5, and 7, respectively. These compounds also enhanced the expression of procollagen type I, and TIMP-1 and hyperin (2) were found to be most effective with IC50 values of 56.7 and 70.3µM, respectively. Hyperin (2) could reduce intracellular reactive oxygen species production in UVB-irradiated WS-1 cells, with the corresponding IC50 value being 80.7µM. Liquid chromatography triple-quadrupole mass spectrometry was used for the quantitative and chemical fingerprint analysis of active compounds. Quercetin 3-O-α-l-rhamnopyranosyl-(1‴→6″)-ß-d-galactopyranoside (1), hyperin (2), afzelin (5), and cryptochlorogenic acid methyl ester (7) constituted 24.2±3.9, 5.5±1.0, 3.4±0.3, and 67.1±8.1mg/g of dry weight in the active n-BuOH fraction, respectively. Our results demonstrate that the extract and the isolated active compounds from E. deflexa leaves possess the potential for protection against skin photoaging.


Subject(s)
Cellular Senescence/drug effects , Eriobotrya/chemistry , Plant Extracts/chemistry , Protective Agents/chemistry , Ultraviolet Rays , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Cellular Senescence/radiation effects , Chromatography, High Pressure Liquid , Collagen Type I/analysis , Enzyme-Linked Immunosorbent Assay , Eriobotrya/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Matrix Metalloproteinase 1/analysis , Plant Extracts/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Protective Agents/isolation & purification , Protective Agents/pharmacology , Tandem Mass Spectrometry
17.
Oncol Rep ; 35(2): 659-68, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26719057

ABSTRACT

The fact that many chemotherapeutic drugs cause chemoresistance and side effects during the course of colorectal cancer treatment necessitates development of novel cytotoxic agents aiming to attenuate new molecular targets. Here, we show that Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao (AM), a traditional Chinese medicine, can inhibit tumor growth in vivo and elucidate the underlying molecular mechanisms. The antitumor effect of AM was assessed on the subcutaneous tumors of human colorectal cancer cell line HCT116 grafted into nude mice. The mice were treated with either water or 500 mg/kg AM once per day, before being sacrificed for extraction of tumors, which were then subjected to microarray expression profiling. The gene expression of the extraction was then profiled using microarray analysis. The identified genes differentially expressed between treated mice and controls reveal that administration of AM suppresses chromosome organization, histone modification, and regulation of macromolecule metabolic process. A separate analysis focused on differentially expressed microRNAs revealing involvement of macromolecule metabolism, and intracellular transport, as well as several cancer signaling pathways. For validation, the input of the identified genes to The Library of Integrated Network-based Cellular Signatures led to many chemopreventive agents of natural origin that produce similar gene expression profiles to that of AM. The demonstrated effectiveness of AM suggests a potential therapeutic drug for colorectal cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Colorectal Neoplasms/pathology , Drugs, Chinese Herbal/pharmacology , Transcriptome/drug effects , Animals , Astragalus propinquus , HCT116 Cells , Humans , Male , Medicine, Chinese Traditional , Mice , Mice, Nude , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Xenograft Model Antitumor Assays
18.
Int J Mol Sci ; 16(12): 28598-613, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26633381

ABSTRACT

Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2'-O-ß-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver-Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.


Subject(s)
Bleaching Agents/chemistry , Bleaching Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pyracantha/chemistry , Bleaching Agents/isolation & purification , Cell Survival/drug effects , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epidermal Cells , Epidermis/drug effects , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/chemistry , Nuclear Magnetic Resonance, Biomolecular , Plant Extracts/isolation & purification , Taiwan
19.
ACS Chem Neurosci ; 6(5): 716-24, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25692332

ABSTRACT

Lovastatin, a secondary metabolite isolated from Monascus-fermented red rice mold, has neuroprotective activity and permeates the blood-brain barrier. The aim of this study was to enhance the activity of lovastatin for potential use as a treatment for neuronal degeneration in Parkinson's disease. Six lovastatin-derived compounds were semisynthesized and screened for neurocytoprotective activity against 6-hydroxydopamine (6-OHDA)-induced toxicity in human neuroblastoma PC12 cells. Four compounds, designated as 3a, 3d, 3e, and 3f, significantly enhanced cell viability. In particular, compound 3f showed excellent neurocytoprotective activity (97.0 ± 2.7%). Annexin V-FITC and propidium iodide double staining and 4',6-diamidino-2-phenylindole staining indicated that compound 3f reduced 6-OHDA-induced apoptosis in PC12 cells. Compound 3f also reduced caspase-3, -8, and -9 activities, and intracellular calcium concentrations elevated by 6-OHDA in a concentration-dependent manner, without inhibiting reactive oxygen species generation. JC-1 staining indicated that compound 3f also stabilized mitochondrial membrane potential. Thus, compound 3f may be used as a neurocytoprotective agent. Future studies should investigate its potential application as a treatment for Parkinson's disease.


Subject(s)
Apoptosis/drug effects , Cell Survival/drug effects , Lovastatin/analogs & derivatives , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Cell Differentiation , Models, Biological , Monascus , Nerve Growth Factor , Oryza , Oxidopamine , PC12 Cells , Parkinsonian Disorders , Rats
20.
Environ Toxicol ; 30(2): 129-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-23765435

ABSTRACT

Divalent lead ions (Pb(2+) ) are toxic environmental pollutants known to cause serious health problems in humans and animals. Absorption of Pb(2+) from air, water, and food takes place in the respiratory and digestive tracts. The ways in which absorbed Pb(2+) affects cell physiology are just beginning to be understood at the molecular level. Here, we used reverse transcription PCR and Western blotting to analyze cultures of human gastric carcinoma cells exposed to 10 µM lead nitrate. We found that Pb(2+) induces gastrin hormone gene transcription and translation in a time-dependent manner. Promoter deletion analysis revealed that activator protein 1 (AP1) was necessary for gastrin gene transcription in cells exposed to Pb(2+) . MitogIen-activated protein kinase (MAPK)/ERK kinase inhibitor PD98059 suppressed the Pb(2+) -induced increase in messenger RNA. Epidermal growth factor receptor (EGFR) inhibitors AG1478 and PD153035 reduced both transcription and phosphorylation by extracellular signal-regulated kinase (ERK1/2). Cells exposed to Pb(2+) also increased production of c-Jun protein, a component of AP1, and over-expression of c-Jun enhanced activation of the gastrin promoter. In sum, the findings suggest the EGFR-ERK1/2-AP1 pathway mediates the effects of Pb(2+) on gastrin gene activity in cell culture.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Gastrins/biosynthesis , Gastrins/genetics , Gene Expression Regulation/drug effects , Lead/toxicity , Transcription Factor AP-1/drug effects , Cell Line, Tumor , Epigenetic Repression/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/drug effects , Humans , MAP Kinase Signaling System , Phosphorylation , Proto-Oncogene Proteins c-jun/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...