Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 46(22): 5189-203, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17676131

ABSTRACT

We performed measurements of the volume scattering function (VSF) between 0.5 degrees and 179 degrees with an angular resolution of 0.3 degrees in the northern Adriatic Sea onboard an oceanographic platform during three different seasons, using the multispectral volume scattering meter (MVSM) instrument. We observed important differences with respect to Petzold's commonly used functions, whereas the Fournier-Forand's analytical formulation provided a rather good description of the measured VSF. The comparison of the derived scattering, b(p)(lambda) and backscattering, b(bp)(lambda) coefficients for particles with the measurements performed with the classical AC-9 and Hydroscat-6 showed agreement to within 20%. The use of an empirical relationship for the derivation of b(b)(lambda) from beta(psi,lambda) at psi=140 degrees was validated for this coastal site although psi=118 degrees was confirmed to be the most appropriate angle. The low value of the factor used to convert beta(psi,lambda) into b(b)(lambda) within the Hydroscat-6 processing partially contributed to the underestimation of b(b)(lambda) with respect to the MVSM. Finally, use of the Kopelevich model together with a measurement of b(p)(lambda) at lambda=555 nm allowed us to reconstruct the VSF with average rms percent differences between 8 and 15%.

2.
Appl Opt ; 45(15): 3605-19, 2006 May 20.
Article in English | MEDLINE | ID: mdl-16708107

ABSTRACT

The spectral volume scattering function (VSF) was measured in a coastal environment from 0.6 degrees to 177.3 degrees by use of a recently developed device. The spectral variations of the particulate VSF and phase function (i.e., ratio of the VSF to the scattering coefficient) were examined as a function of the scattering angle. The angular dependency of both VSF and phase- function spectra was highly sensitive to the absorption and to the size distribution of the particles. As a result, the use of spectrally neutral phase functions in radiative-transfer modeling is questioned.

SELECTION OF CITATIONS
SEARCH DETAIL
...