Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38991019

ABSTRACT

Lead bromide-based perovskites are promising materials as the top cells of tandem solar cells and for application in various fields requiring high voltages owing to their wide band gaps and excellent environmental resistances. However, several factors, such as the formation of bulk and surface defects, impede the performances of corresponding devices, thereby limiting the efficiencies of these devices as single-junction devices. To reduce the number of defect sites, urea is added to the formamidinium lead bromide (FAPbBr3) perovskite material to increase its grain size. Nevertheless, urea undesirably reacts with lead(II) bromide (PbBr2) in the perovskite structure, creating unfavorable impurities in the device. To solve this problem, herein, in addition to urea, we introduced formamidinium chloride (FACl) into FAPbBr3. Owing to the synergistic effect of urea and FACl, the FAPbBr3 film quality effectively improved due to suppression of the generation of impurities and stabilization of film crystallinity. Consequently, the FAPbBr3 single-junction solar cell constructed using FACl and urea as additives demonstrated a power conversion efficiency of 9.6% and an open-circuit voltage of 1.516 V with negligible hysteresis. This study provides new insights into the use of additive engineering for overcoming the energy losses caused by defects in perovskite films.

2.
ACS Appl Mater Interfaces ; 15(44): 51050-51058, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37874850

ABSTRACT

The cesium lead iodide (CsPbI3) perovskite solar cell possesses a wide band gap ranging from 1.65 to 1.75 eV, which is suitable for integration into a tandem structure along with a low-band-gap silicon solar cell. Moreover, CsPbI3 has received considerable attention as a potential solution for the prevalent issues of low thermal stability of organic-inorganic perovskite solar cells and phase segregation encountered in conventional mixed halide wide-band-gap perovskite solar cells. Through the implementation of volatile additives, CsPbI3 has demonstrated substantial advancements in efficiency, process temperature, and stability. This study introduces a novel approach for barium (Ba)-doping by spraying an antisolvent containing barium bis(trifluoromethanesulfonimide) during the spin-coating process. By incorporating Ba2+ through this spraying technique, the formation of the delta phase in CsPbI3 is significantly suppressed; thereby, a power conversion efficiency of 18.56% is achieved, and a remarkable 93% of the initial efficiency is maintained after 600 h.

3.
ACS Appl Mater Interfaces ; 10(29): 24499-24507, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29962200

ABSTRACT

Hydrogen production by water electrolysis has been regarded as a promising approach to wean away from sourcing energy through fossil fuels, as the produced hydrogen gas can be converted to electrical or thermal energy without any harmful byproducts. However, an efficient hydrogen production is restricted by the sluggish oxygen evolution reaction (OER) at the counter anode. Therefore, the development of new OER catalysts with high catalytic activities is crucial for high performance water splitting. Here, we report a novel sloughing method for the fabrication of an efficient OER catalyst on a stainless steel (SS) surface. A chalcogenide (Fe-S) overlayer generated by sulfurization on the SS surface is found to play a critical role as a precursor layer in the formation of an active surface during water oxidation. Interestingly, a newly exposed catalytic layer after sloughing off the Fe-S overlayer has a nanoporous structure with changed elemental composition, resulting in a significant improvement in OER performance with an overpotential value of 267 mV at a current density of 10 mA cm-2 (in 1 M KOH). Our novel method for the preparation of OER catalyst provides an important insight into designing an efficient and stable electrocatalyst for the water splitting community.

4.
Dalton Trans ; 46(7): 2122-2128, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28119985

ABSTRACT

In the present study, we have synthesized high surface area MoS2 sponge electrodes via a facile hydrothermal method followed by a freeze drying process. The performance of the MoS2 based symmetric capacitor showed a high specific capacitance value of around 128 F g-1 at a scan rate of 2 mV s-1, and also a single electrode showed a specific capacitance of 510 F g-1, which is a remarkable value to be reported for a MoS2 based material in a symmetric device configuration. Also, a high energy density of around 6.15 Wh kg-1 and a good cyclic stability over 4000 cycles are obtained for the symmetrical cell.

5.
ChemSusChem ; 9(1): 31-5, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26612081

ABSTRACT

Flexible perovskite solar cells (FPSCs) have various applications such as wearable electronic textiles and portable devices. In this work, we demonstrate FPSCs on a titanium metal substrate employing solution-processed silver nanowires (Ag NWs) as the top electrode. The Ag NW electrodes were deposited on top of the spiro-MeOTAD hole transport layer by a carefully controlled spray-coating method at moderate temperatures. The power conversion efficiency (PCE) reached 7.45 % under AM 1.5 100 mW cm(-2) illumination. Moreover, the efficiency for titanium-based FPSCs decreased only slightly (by 2.6 % of the initial value) after the devices were bent 100 times. With this and other advances, fully solution-based indium-free flexible photovoltaics, advantageous in terms of price and processing, have the potential to be scaled into commercial production.


Subject(s)
Calcium Compounds/chemistry , Electric Power Supplies , Nanowires/chemistry , Oxides/chemistry , Silver/chemistry , Solar Energy , Titanium/chemistry , Electrodes , Equipment Design , Microscopy, Electron, Scanning , Spiro Compounds/chemistry , Surface Properties
6.
Sci Rep ; 5: 8151, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25633147

ABSTRACT

Graphene-decorated V2O5 nanobelts (GVNBs) were synthesized via a low-temperature hydrothermal method in a single step. V2O5 nanobelts (VNBs) were formed in the presence of graphene oxide, a mild oxidant, which also enhanced the conductivity of GVNBs. From the electron energy loss spectroscopy analysis, the reduced graphene oxide (rGO) are inserted into the layered crystal structure of V2O5 nanobelts, which further confirmed the enhanced conductivity of the nanobelts. The electrochemical energy-storage capacity of GVNBs was investigated for supercapacitor applications. The specific capacitance of GVNBs was evaluated using cyclic voltammetry (CV) and charge/discharge (CD) studies. The GVNBs having V2O5-rich composite, namely, V3G1 (VO/GO = 3:1), showed superior specific capacitance in comparison to the other composites (V1G1 and V1G3) and the pure materials. Moreover, the V3G1 composite showed excellent cyclic stability and the capacitance retention of about 82% was observed even after 5000 cycles.

7.
Nanoscale ; 6(19): 11066-71, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25145568

ABSTRACT

Graphene-decorated single crystalline V2O5 nanowires (G-VONs) have been synthesized by mixing graphene oxide (GO) and V2O5 suspensions at room temperature. In this process, V2O5 nanowires (VONs) are formed spontaneously from commercial V2O5 particles with the aid of GO. The as-formed one dimensional G-VONs were characterized by using a X-ray diffractometer, a X-ray photoelectron spectrometer, a scanning electron microscope, and a transmission electron microscope. GO plays a vital role in the VON formation with the simultaneous reduction of GO. A single G-VON showed superior electrical conductivity compared with that of the pure VONs obtained from the sol-gel method. This could be ascribed to the insertion of rGO sheets into the V2O5 layered structure, which was further confirmed by electron energy loss spectroscopy.

8.
ChemSusChem ; 6(11): 2117-23, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24106168

ABSTRACT

The addition of various amounts of a strong oxidizing agent (3,5-dinitrosalicyclic acid, DNSA) to TiO2 paste enhances the solar-to-electrical-energy conversion efficiency of the corresponding dye-sensitized solar cells (DSSCs). Maximum performance was obtained from a device that was fabricated by using a TiO2 paste with 2 wt % DNSA, which showed a short-circuit current density of 17.88 mA cm(-2) , an open-circuit voltage of 0.78 V, and an overall conversion efficiency of 9.62 %, which was an improvement in comparison to reference cells without DNSA. This improvement was rationalized in terms of the amount of residual carbon (formed due to the oxidation of binders) remaining on the TiO2 surface. Addition of a larger amount of oxidizing agent led to a smaller amount of residual carbon on the TiO2 surface. This smaller amount of residual carbon enhanced the adsorption of a larger number of dye molecules on the TiO2 surface. The addition of an oxidizing agent facilitated the removal of more residual organic species during the high-temperature calcination process while causing no change in the surface morphology and microstructure of the TiO2 film.


Subject(s)
Coloring Agents/chemistry , Electric Power Supplies , Oxidants/chemistry , Sunlight , Titanium/chemistry , Electrochemistry , Ointments
9.
Chem Commun (Camb) ; 49(15): 1471-87, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23247089

ABSTRACT

Dye-sensitized solar cells (DSSCs) have been extensively evolved for the past two decades in order to improve their cell performance. From the commercialization point of view, the overall solar to electrical energy conversion efficiency should compete with other solar cells. But, due to structural restrictions of DSSC using the liquid electrolyte and a space requirement between two electrodes, the direct tandem construction of DSSCs by stacking of repeating units is highly limited. In this feature article, important research trials to overcome these barriers and a recent research trend to improve the light harvesting strategies mainly panchromatic engineering, various tandem approaches such as parallel tandem, series tandem, p-n tandem etc., have been briefly reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL
...