Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 20(202): 20220712, 2023 05.
Article in English | MEDLINE | ID: mdl-37194273

ABSTRACT

The Ponseti method corrects a clubfoot by manipulation and casting which causes stress relaxation on the tendons. Here, we examined the effect of long-term stress relaxation on tendon extracellular matrix (ECM) by (1) an ex vivo stress relaxation test, (2) an in vitro tenocyte culture with stress relaxation and (3) an in vivo rabbit study. Time-dependent tendon lengthening and ECM alterations including crimp angle reduction and cleaved elastin were observed, which illustrated the mechanism of tissue lengthening behind the treatment-a material-based crimp angle reduction resulted from elastin cleavage. Additionally, in vitro and in vivo results observed restoration of these ECM alterations along with increased elastin level after 7 days of treatment, and the existence of neovascularization and inflammation, indicating the recovery and adaptation from the tendon in reaction to the treatment. Overall, this study provides the scientific background and information that helps explain the Ponseti method.


Subject(s)
Clubfoot , Elastin , Animals , Rabbits , Tendons , Extracellular Matrix , Clubfoot/therapy , Inflammation , Treatment Outcome
2.
Adv Mater ; 32(8): e1905719, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31851400

ABSTRACT

The extracellular matrix (ECM) has force-responsive (i.e., mechanochemical) properties that enable adaptation to mechanical loading through changes in fibrous network structure and interfiber bonding. Imparting such properties into synthetic fibrous materials will allow reinforcement under mechanical load, the potential for material self-adhesion, and the general mimicking of ECM. Multifiber hydrogel networks are developed through the electrospinning of multiple fibrous hydrogel populations, where fibers contain complementary chemical moieties (e.g., aldehyde and hydrazide groups) that form covalent bonds within minutes when brought into contact under mechanical load. These fiber interactions lead to microscale anisotropy, as well as increased material stiffness and plastic deformation. Macroscale structures (e.g., tubes and layered scaffolds) are fabricated from these materials through interfiber bonding and adhesion when placed into contact while maintaining a microscale fibrous architecture. The design principles for engineering plasticity described can be applied to numerous material systems to introduce unique properties, from textiles to biomedical applications.


Subject(s)
Adhesives/chemistry , Hydrogels/chemistry , Elastic Modulus , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , Hyaluronic Acid/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Oligopeptides/chemistry , Oligopeptides/metabolism
3.
Appl Bionics Biomech ; 2019: 4308462, 2019.
Article in English | MEDLINE | ID: mdl-31019550

ABSTRACT

Congenital clubfoot is a complex pediatric foot deformity, occurring in approximately 1 in 1000 live births and resulting in significant disability, deformity, and pain if left untreated. The Ponseti method of manipulation is widely recognized as the gold standard treatment for congenital clubfoot; however, its mechanical aspects have not yet been fully explored. During the multiple manipulation-casting cycles, the tendons and ligaments on the medial and posterior aspect of the foot and ankle, which are identified as the rate-limiting tissues, usually undergo weekly sequential stretches, with a plaster of Paris cast applied after the stretch to maintain the length gained. This triggers extracellular matrix remodeling and tissue growth, but due to the viscoelastic properties of tendons and ligaments, the initial strain size, rate, and loading history will affect the relaxation behavior and mechanical strength of the tissue. To increase the efficiency of the Ponseti treatment, we discuss the theoretical possibilities of decreasing the size of the strain step and interval of casting and/or increasing the overall number of casts. This modification may provide more tensile stimuli, allow more time for remodeling, and preserve the mechanical integrity of the soft tissues.

4.
ACS Biomater Sci Eng ; 5(8): 3899-3908, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-33438429

ABSTRACT

Tissue fibrosis is a leading cause of mortality and is characterized by excessive protein deposition and altered tissue mechanical properties. In pathological fibrosis, as well as cancer related fibrosis, tissue pericytes and fibroblasts transition from a quiescent to a myofibroblastic phenotype. In vitro models are needed to better understand how these cells are influenced by their local microenvironment. Here, we developed a fibrous network platform to mimic the structure of the extracellular matrix, where fibers consist of cross-linked hyaluronic acid hydrogels with controlled cross-link density and mechanical properties. As a model myofibroblast precursor, primary hepatic stellate cells were seeded onto fibers with either low (soft) or high (stiff) cross-link density, either directly after isolation (quiescent) or following preculture on tissue culture plates (activated). In general, both quiescent and activated cells showed an increase in spreading, alpha smooth muscle actin expression, and the formation of multicellular clusters on soft fibers when compared to stiff fibers. Further, inhibition of alpha smooth muscle actin decreased activation of cells on soft fibers. This is likely due to fiber recruitment in soft fibers that increased local fiber density, whereas stiff fibers resisted recruitment. This work emphasizes the importance of substrate topography on cell-material interactions and shows that tunable fibrous hydrogels are a relevant culture platform for studying fibrosis and mechanotransduction in disease.

5.
Sci Rep ; 8(1): 14253, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250121

ABSTRACT

We developed an osseocompatible ß-type Ti-28Nb-11Ta-8Zr (TNTZ) alloy that displays the excellent elastic modulus, cellular response, corrosion resistance and antibacterial capability demanded for bone-mimetic materials. The TNTZ alloy exhibited an elastic modulus of 49 GPa, which approximates that of human bones and prevent stress shielding effects. A further anodic oxidation and subsequent post-annealing modification formed a crystalline nanoporous TNTZ oxide layer (NPTNTZO(c)) on the alloy surface, potentially promoting interlocking with the extracellular matrix of bone cells and cell proliferation. Osteoblast viability tests also verified that NPTNTZO(c) enhanced cell growth more significantly than that of flat TNTZ. In addition, potentiodynamic polarization tests in Hanks' balanced salt solution (HBSS) revealed that both TNTZ and NPTNTZO(c) exhibited better corrosion resistance than commercial pure titanium. Finally, NPTNTZO(c) reinforced with silver nanoparticles (NPTNTZO


Subject(s)
Niobium/chemistry , Osteoblasts/drug effects , Tantalum/chemistry , Titanium/chemistry , Zirconium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Corrosion , Humans , Materials Testing , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Niobium/therapeutic use , Osteoblasts/cytology , Oxidation-Reduction/drug effects , Silver/chemistry , Tantalum/therapeutic use , Titanium/therapeutic use , Zirconium/therapeutic use
6.
Phys Chem Chem Phys ; 16(13): 6033-40, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24553998

ABSTRACT

A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar organometallic perovskite-fullerene heterojunction solar cells. We find that the difference between the highest occupied molecular orbital (HOMO) level of CH3NH3PbI3 perovskite and the Fermi level of indium-tin-oxide (ITO) dominates the voltage output of the device. ITO films on glass or on the polyethylene terephthalate (PET) flexible substrate with different work functions are investigated to illustrate this phenomenon. The higher work function of the PET/ITO substrate decreases the energy loss of hole transfer from the HOMO of perovskite to ITO and minimizes the energy redundancy of the photovoltage output. The devices using the high work function ITO substrate as contact material show significant open-circuit voltage enhancement (920 mV), with the power conversion efficiency of 4.54%, and these types of extra-thin planar bilayer heterojunction solar cells have the potential advantages of low-cost and lightweight.

7.
Adv Mater ; 25(27): 3727-32, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23775589

ABSTRACT

All-solid-state donor/acceptor planar-heterojunction (PHJ) hybrid solar cells are constructed and their excellent performance measured. The deposition of a thin C60 fullerene or fullerene-derivative (acceptor) layer in vacuum on a CH3 NH3 PbI3 perovskite (donor) layer creates a hybrid PHJ that displays the photovoltaic effect. Such heterojunctions are shown to be suitable for the development of newly structured, hybrid, efficient solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...