Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 161(4): 353-363, 2021 04.
Article in English | MEDLINE | ID: mdl-33528381

ABSTRACT

In the mammalian female reproductive tract, physiological oxygen tension is lower than that of the atmosphere. Therefore, to mimic in vivo conditions during in vitro culture (IVC) of mammalian early embryos, 5% oxygen has been extensively used instead of 20%. However, the potential effect of hypoxia on the yield of early embryos with high developmental competence remains unknown or controversial, especially in pigs. In the present study, we examined the effects of low oxygen tension under different oxygen tension levels on early developmental competence of parthenogenetically activated (PA) and in vitro-fertilized (IVF) porcine embryos. Unlike the 5% and 20% oxygen groups, exposure of PA embryos to 1% oxygen tension, especially in early-phase IVC (0-2 days), greatly decreased several developmental competence parameters including blastocyst formation rate, blastocyst size, total cell number, inner cell mass (ICM) to trophectoderm (TE) ratio, and cellular survival rate. In contrast, 1% oxygen tension did not affect developmental parameters during the middle (2-4 days) and late phases (4-6 days) of IVC. Interestingly, induction of autophagy by rapamycin treatment markedly restored the developmental parameters of PA and IVF embryos cultured with 1% oxygen tension during early-phase IVC, to meet the levels of the other groups. Together, these results suggest that the early development of porcine embryos depends on crosstalk between oxygen tension and autophagy. Future studies of this relationship should explore the developmental events governing early embryonic development to produce embryos with high developmental competence in vitro.


Subject(s)
Autophagy , Embryo, Mammalian/cytology , Embryonic Development , Fertilization in Vitro/veterinary , Hypoxia/physiopathology , Oxygen/administration & dosage , Swine/embryology , Animals , Blastocyst/cytology , Blastocyst/drug effects , Embryo, Mammalian/drug effects , Female , Pregnancy
2.
PeerJ ; 7: e8143, 2019.
Article in English | MEDLINE | ID: mdl-31844571

ABSTRACT

Embryo aggregation is a useful method to produce blastocysts with high developmental competence to generate more offspring in various mammals, but the underlying mechanism(s) regarding the beneficial effects are largely unknown. In this study, we investigated the effects of embryo aggregation using 4-cell stage embryos in in vitro developmental competence and the relationship of stress conditions in porcine early embryogenesis. We conducted aggregation using the well of the well system and confirmed that aggregation using two or three embryos was useful for obtaining blastocysts. Aggregated embryos significantly improved developmental competence, including blastocyst formation rate, blastomere number, ICM/TE ratio, and cellular survival rate, compared to non-aggregated embryos. Investigation into the relationship between embryo aggregation and stress conditions revealed that mitochondrial function increased, and oxidative and endoplasmic reticulum (ER)-stress decreased compared to 1X (non-aggregated embryos) blastocysts. In addition, 3X (three-embryo aggregated) blastocysts increased the expression of pluripotency, anti-apoptosis, and implantation related genes, and decreased expression of pro-apoptosis related genes. Therefore, these findings indicate that embryo aggregation regulates in vitro stress conditions to increase developmental competence and contributes to the in vitro production of high-quality embryos and the large-scale production of transgenic and chimeric pigs.

SELECTION OF CITATIONS
SEARCH DETAIL
...