Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
J Agric Food Chem ; 72(21): 12171-12183, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748640

ABSTRACT

Ulcerative colitis (UC) is a complex chronic inflammatory disease closely associated with gut homeostasis dysfunction. The previous studies have shown that stachyose, a functional food additive, has the potential to enhance gut health and alleviate UC symptoms. However, the underlying mechanism of its effects remains unknown. In this study, our findings showed that dietary supplements of stachyose had a significant dose-dependent protective effect on colitis symptoms, regulation of gut microbiota, and restoration of the Treg/Th17 cell balance in dextran sulfate sodium (DSS) induced colitis mice. To further validate these findings, we conducted fecal microbiota transplantation (FMT) to treat DSS-induced colitis in mice. The results showed that microbiota from stachyose-treated mice exhibited a superior therapeutic effect against colitis and effectively regulated the Treg/Th17 cell balance in comparison to the control group. Moreover, both stachyose supplementation and FMT resulted in an increase in butyrate production and the activation of PPARγ. However, this effect was partially attenuated by PPARγ antagonist GW9662. These results suggested that stachyose alleviates UC symptoms by modulating gut microbiota and activating PPARγ. In conclusion, our work offers new insights into the benefical effects of stachyose on UC and its potential role in modulating gut microbiota.


Subject(s)
Butyrates , Colitis, Ulcerative , Gastrointestinal Microbiome , Mice, Inbred C57BL , PPAR gamma , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Mice , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Gastrointestinal Microbiome/drug effects , Humans , Male , Signal Transduction/drug effects , Colitis, Ulcerative/immunology , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Oligosaccharides/administration & dosage , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Dextran Sulfate/adverse effects
2.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36627143

ABSTRACT

BACKGROUND: Microphthalmia-associated transcription factor (MITF) is a master regulator of melanogenesis and is mainly expressed in melanoma cells. MITF has also been reported to be expressed in non-pigmented cells, such as osteoclasts, mast cells, and B cells. However, the roles of MITF in immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSCs), remain unclear. Here, we investigated the role of MITF in the differentiation process of MDSCs during tumor development. METHODS: In vitro-generated murine MDSCs and primary MDSCs from breast cancer-bearing mice or lung carcinoma-bearing mice were used to determine the expression level of MITF and the activity of MDSCs. Additionally, we investigated whether in vivo tumor growth can be differentially regulated by coinjection of MDSCs in which MITF expression is modulated by small molecules. Furthermore, the number of MITF+ monocytic (MO)-MDSCs was examined in human tumor tissues or tumor-free lymph nodes by immunohistochemistry (IHC). RESULTS: The expression of MITF was strongly increased in MO-MDSCs from tumors of breast cancer-bearing mice compared with polymorphonuclear MDSCs. We found that MITF expression in MDSCs was markedly induced in the tumor microenvironment (TME) and related to the functional activity of MDSCs. MITF overexpression in myeloid cells increased the expression of MDSC activity markers and effectively inhibited T-cell proliferation compared with those of control MDSCs, whereas shRNA-mediated knockdown of MITF in myeloid cells altered the immunosuppressive function of MDSCs. Modulation of MITF expression by small molecules affected the differentiation and immunosuppressive function of MDSCs. While increased MITF expression in MDSCs promoted breast cancer progression and CD4+ or CD8+ T-cell dysfunction, decreased MITF expression in MDSCs suppressed tumor progression and enhanced T-cell activation. Furthermore, IHC staining of human tumor tissues revealed that MITF+ MO-MDSCs are more frequently observed in tumor tissues than in tumor-free draining lymph nodes obtained from patients with cancer. CONCLUSIONS: Our results indicate that MITF regulates the differentiation and function of MDSCs and can be a novel therapeutic target for modulating MDSC activity in immunosuppressive s.


Subject(s)
Breast Neoplasms , Microphthalmia-Associated Transcription Factor , Myeloid-Derived Suppressor Cells , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Differentiation , Microphthalmia-Associated Transcription Factor/genetics , Myeloid Cells/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment
3.
Mol Ther Nucleic Acids ; 29: 803-822, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36159587

ABSTRACT

Cancer stem-like cells (CSCs) have been suggested to be responsible for chemoresistance and tumor recurrence owing to their self-renewal capacity and differentiation potential. Although WEE1 is a strong candidate target for anticancer therapies, its role in ovarian CSCs is yet to be elucidated. Here, we show that WEE1 plays a key role in regulating CSC properties and tumor resistance to carboplatin via a microRNA-dependent mechanism. We found that WEE1 expression is upregulated in ovarian cancer spheroids because of the decreased expression of miR-424 and miR-503, which directly target WEE1. The overexpression of miR-424/503 suppressed CSC activity by inhibiting WEE1 expression, but this effect was reversed on the restoration of WEE1 expression. Furthermore, we demonstrated that NANOG modulates the miR-424/503-WEE1 axis that regulates the properties of CSCs. We also demonstrated the pharmacological restoration of the NANOG-miR-424/503-WEE1 axis and attenuation of ovarian CSC characteristics in response to atorvastatin treatment. Lastly, miR-424/503-mediated WEE1 inhibition re-sensitized chemoresistant ovarian cancer cells to carboplatin. Additionally, combined treatment with atorvastatin and carboplatin synergistically reduced tumor growth, chemoresistance, and peritoneal seeding in the intraperitoneal mouse models of ovarian cancer. We identified a novel NANOG-miR-424/503-WEE1 pathway for regulating ovarian CSCs, which has potential therapeutic utility in ovarian cancer treatment.

4.
Int J Mol Sci ; 23(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36142818

ABSTRACT

Cancer immunotherapy has fundamentally altered cancer treatment; however, its efficacy is limited to a subset of patients in most clinical settings. The immune system plays a key role in cancer progression from tumor initiation to the metastatic state. Throughout the treatment course, communications between the immune cells in the tumor microenvironment and the immune macroenvironment, as well as interactions between the immune system and cancer cells, are dynamic and constantly evolving. To improve the clinical benefit for patients who do not respond completely to immunotherapy, the molecular mechanisms of resistance to immunotherapy must be elucidated in order to develop effective strategies to overcome resistance. In an attempt to improve and update the current understanding of the molecular mechanisms that hinder immunotherapy, we discuss the molecular mechanisms of cancer resistance to immunotherapy and the available treatment strategies.


Subject(s)
Immunotherapy , Neoplasms , Humans , Immune System/pathology , Neoplasms/pathology , Tumor Microenvironment
5.
Int J Biol Sci ; 18(9): 3859-3873, 2022.
Article in English | MEDLINE | ID: mdl-35813469

ABSTRACT

Chemotherapy has been widely used as a clinical treatment for cancer over the years. However, its effectiveness is limited because of resistance of cancer cells to programmed cell death (PCD) after treatment with anticancer drugs. To elucidate the resistance mechanism, we initially focused on cancer cell-specific mitophagy, an autophagic degradation of damaged mitochondria. This is because mitophagy has been reported to provide cancer cells with high resistance to anticancer drugs. Our data showed that TRIP-Br1 oncoprotein level was greatly increased in the mitochondria of breast cancer cells after treatment with various anticancer drugs including staurosporine (STS), the main focus of this study. STS treatment increased cellular ROS generation in cancer cells, which triggered mitochondrial translocation of TRIP-Br1 from the cytosol via dephosphorylation of TRIP-Br1 by protein phosphatase 2A (PP2A). Up-regulated mitochondrial TRIP-Br1 suppressed cellular ROS levels. In addition, TRIP-Br1 rapidly removed STS-mediated damaged mitochondria by activating mitophagy. It eventually suppressed STS-mediated PCD via degradation of VDACI, TOMM20, and TIMM23 mitochondrial membrane proteins. TRIP-Br1 enhanced mitophagy by increasing expression levels of two crucial lysosomal proteases, cathepsins B and D. In conclusion, TRIP-Br1 can suppress the sensitivity of breast cancer cells to anticancer drugs by activating autophagy/mitophagy, eventually promoting cancer cell survival.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/pharmacology , Apoptosis , Autophagy , Breast Neoplasms/drug therapy , Female , Humans , Mitophagy , Oncogene Proteins/pharmacology , Reactive Oxygen Species/metabolism
6.
J Hematol Oncol ; 15(1): 82, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710446

ABSTRACT

Much higher risk of cancer has been found in diabetes patients. Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) have been extensively studied in both breast cancer and diabetes therapies. Interestingly, a recent study proposed that IR/IGF1R ratio is an important factor for breast cancer prognosis. Women with higher IR/IGF1R ratio showed poor breast cancer prognosis as well as hyperinsulinemia. Here, we propose a novel mechanism that oncogenic protein TRIP-Br1 renders breast cancer cells and insulin deficient mice to have higher IR/IGF1R ratio by positively and negatively regulating IR and IGF1R expression at the protein level, respectively. TRIP-Br1 repressed IR degradation by suppressing its ubiquitination. Meanwhile, TRIP-Br1 directly interacts with both IGF1R and NEDD4-1 E3 ubiquitin ligase, in which TRIP-Br1/NEDD4-1 degrades IGF1R via ubiquitin/proteasome system. TRIP-Br1-mediated higher IR/IGF1R ratio enhanced the proliferation and survival of breast cancer cells. In conclusion, current study may provide an important information in the regulatory mechanism of how breast cancer cells have acquired higher IR/IGF1R ratio.


Subject(s)
Breast Neoplasms , Insulin-Like Growth Factor I , Animals , Breast Neoplasms/metabolism , Female , Humans , Insulin-Like Growth Factor I/metabolism , Mice , Prognosis , Receptor, IGF Type 1 , Receptor, Insulin , Ubiquitin
7.
Biomedicines ; 10(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35625886

ABSTRACT

Acquired chemoresistance of tumor cells is an unwanted consequence of cancer treatment. Overcoming chemoresistance is particularly important for efficiently improving cancer therapies. Here, using multiple lines of evidence, we report the suppressive role of SERTAD1 in apoptosis/anoikis. Among various breast cancer cell lines, higher SERTAD1 expression was found in MCF7 and MDA-MB-231 in suspension than in adherent cell culture. We revealed an unexpected phenomenon that different types of cell deaths were induced in response to different doses of doxorubicin (Dox) in breast cancer cells, presumably via lysosomal membrane permeabilization. A low dose of Dox highly activated autophagy, while a high dose of the chemotherapy induced apoptosis. Inhibition of SERTAD1 promoted the sensitivity of breast cancer cells to Dox and paclitaxel, leading to a significant reduction in tumor volumes of xenograft mice. Simultaneously targeting cancer cells with Dox and autophagy inhibition successfully induced higher apoptosis/anoikis. The novel role of SERTAD1 in maintaining cellular homeostasis has also been suggested in which lysosomal contents, including LAMP1, LAMP2, CTSB, and CTSD, were reduced in SERTAD1-deficient cells.

8.
Front Microbiol ; 13: 818714, 2022.
Article in English | MEDLINE | ID: mdl-35602011

ABSTRACT

Mycolic acids are the key constituents of mycobacterial cell wall, which protect the bacteria from antibiotic susceptibility, helping to subvert and escape from the host immune system. Thus, the enzymes involved in regulating and biosynthesis of mycolic acids can be explored as potential drug targets to kill Mycobacterium tuberculosis (Mtb). Herein, Kyoto Encyclopedia of Genes and Genomes is used to understand the fatty acid metabolism signaling pathway and integrative computational approach to identify the novel lead molecules against the mtFabH (ß-ketoacyl-acyl carrier protein synthase III), the key regulatory enzyme of the mycolic acid pathway. The structure-based virtual screening of antimycobacterial compounds from ChEMBL library against mtFabH results in the selection of 10 lead molecules. Molecular binding and drug-likeness properties of lead molecules compared with mtFabH inhibitor suggest that only two compounds, ChEMBL414848 (C1) and ChEMBL363794 (C2), may be explored as potential lead molecules. However, the spatial stability and binding free energy estimation of thiolactomycin (TLM) and compounds C1 and C2 with mtFabH using molecular dynamics simulation, followed by molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) indicate the better activity of C2 (ΔG = -14.18 kcal/mol) as compared with TLM (ΔG = -9.21 kcal/mol) and C1 (ΔG = -13.50 kcal/mol). Thus, compound C1 may be explored as promising drug candidate for the structure-based drug designing of mtFabH inhibitors in the therapy of Mtb.

9.
Drug Deliv ; 29(1): 1142-1149, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35384787

ABSTRACT

Oral drug delivery systems (ODDSs) have various advantages of simple operation and few side effects. ODDSs are highly desirable for colon-targeted therapy (e.g. ulcerative colitis and colorectal cancer), as they improve therapeutic efficiency and reduce systemic toxicity. Chitosan/alginate nanoparticles (CANPs) show strong electrostatic interaction between the carboxyl group of alginates and the amino group of chitosan which leads to shrinkage and gel formation at low pH, thereby protecting the drugs from the gastrointestinal tract (GIT) and aggressive gastric environment. Meanwhile, CANPs as biocompatible polymer, show intestinal mucosal adhesion, which could extend the retention time of drugs on inflammatory sites. Recently, CANPs have attracted increasing interest as colon-targeted oral drug delivery system for intestinal diseases. The purpose of this review is to summarize the application and treatment of CANPs in intestinal diseases and insulin delivery. And then provide a future perspective of the potential and development direction of CANPs as colon-targeted ODDSs.


Subject(s)
Chitosan , Colitis, Ulcerative , Nanoparticles , Administration, Oral , Alginates , Colitis, Ulcerative/drug therapy , Drug Carriers/therapeutic use , Drug Delivery Systems , Humans , Pharmaceutical Preparations
10.
Cancers (Basel) ; 13(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34885221

ABSTRACT

(1) Background: The aim of the present study was to evaluate the effect of NDRG2 expression in regulating PD-L1 or PD-L2 on malignant breast cancer cells. (2) Methods: Overexpression and knockdown of the NDRG2 gene in human and mouse cancer cells were applied and quantitative real-time PCR and Western blot analysis were performed. T cell proliferation and TCGA analysis were conducted to validate negative correlation of the PD-L1 expression with the NDRG2 expression. (3) Results: We found that NDRG2 overexpression inhibits PD-L1 expression in human breast cancer cells through NF-κB signaling. NDRG2 overexpression in 4T1 mouse breast cancer cells followed by PD-L1 downregulation could block the suppressive activity of cancer cells on T cell proliferation and knockdown of NDRG2 expression enhanced the expression of PD-L1, leading to the inhibition of T cell proliferation by tumor cell coculture. Finally, we confirmed from TCGA data that PD-L1 expression in basal and triple-negative breast cancer patients was negatively correlated with the expression of NDRG2. Intriguingly, linear regression analysis using TNBC cell lines showed that the PD-L1 level was negatively associated with the NDRG2 expression level. (4) Conclusions: Our findings demonstrate that NDRG2 expression is instrumental in suppressing PD-L1 expression and restoring PD-L1-inhibited T cell proliferation activity in TNBC cells.

11.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769090

ABSTRACT

GLOBOCAN 2020 estimated more than 19.3 million new cases, and about 10 million patients were deceased from cancer in 2020. Clinical manifestations showed that several growth factor receptors consisting of transmembrane and cytoplasmic tyrosine kinase (TK) domains play a vital role in cancer progression. Receptor tyrosine kinases (RTKs) are crucial intermediaries of the several cellular pathways and carcinogenesis that directly affect the prognosis and survival of higher tumor grade patients. Tyrosine kinase inhibitors (TKIs) are efficacious drugs for targeted therapy of various cancers. Therefore, RTKs have become a promising therapeutic target to cure cancer. A recent report shows that TKIs are vital mediators of signal transduction and cancer cell proliferation, angiogenesis, and apoptosis. In this review, we discuss the structure and function of RTKs to explore their prime role in cancer therapy. Various TKIs have been developed to date that contribute a lot to treating several types of cancer. These TKI based anticancer drug molecules are also discussed in detail, incorporating their therapeutic efficacy, mechanism of action, and side effects. Additionally, this article focuses on TKIs which are running in the clinical trial and pre-clinical studies. Further, to gain insight into the pathophysiological mechanism of TKIs, we also reviewed the impact of RTK resistance on TKI clinical drugs along with their mechanistic acquired resistance in different cancer types.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Neoplasms/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Binding Sites , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Neoplasms/enzymology , Protein-Tyrosine Kinases/metabolism
12.
J Agric Food Chem ; 69(33): 9597-9607, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34378931

ABSTRACT

ß-Galacto-oligosaccharide (ß-GOS) showed great potential in ulcerative colitis (UC) adjuvant therapy. Herein, the preventive and prebiotic effect of enzymatic-synthesized α-linked galacto-oligosaccharide (α-GOS) was investigated in dextran sodium sulfate-induced colitis and gut microbiota dysbiosis mice. Compared with ß-GOS, the α-GOS supplement was more effective in improving preventive efficacy, promoting colonic epithelial barrier integrity, and alleviating inflammation cytokines. Moreover, the activation of the NOD-like receptor (NLR) family member NLRP3 inflammasome-mediated inflammation was significantly inhibited by both α-GOS and ß-GOS. Gut microbiota analysis showed that α-GOS treatment reshaped the dysfunctional gut microbiota. The subsequent Spearman's correlation coefficient analysis indicated that these gut microbiota changes were significantly correlated with the inflammatory parameters. These results suggested that the enzymatic-synthesized α-GOS is a promising therapeutic agent in UC prevention and adjuvant treatment by maintaining intestinal homeostasis.


Subject(s)
Colitis , Gastrointestinal Microbiome , Animals , Colitis/chemically induced , Colitis/drug therapy , Colon , Dextran Sulfate/toxicity , Disease Models, Animal , Dysbiosis/drug therapy , Mice , Mice, Inbred C57BL , Oligosaccharides , Prebiotics , Sulfates
13.
Mol Med Rep ; 24(3)2021 Sep.
Article in English | MEDLINE | ID: mdl-34278499

ABSTRACT

Following the publication of the above article, an interested reader drew to the authors' attention that they had mentioned that activated PKCδ phosphorylates IKKß in order that IKKß is relocated to the plasma membrane, resulting in the induction of mast cell degranulation; however, four references the authors had included did not seem to support this statement. The authors have re-examined their paper, and realized that the four references the reader mentioned were indeed cited incorrectly, and wish to rectify this error through revising the third paragraph in the Discussion section, the References section, and an associated figure (Fig. 6C) in order to avoid any further misunderstandings on the part of the readership. First, the authors wish to revise the wording of the third and fourth paragraphs of the Discussion, as featured on pp. 1101-1102, to the following (changed text is indicated in bold): 'We showed that CRT exerts anti-AD effect through inhibition of the mast cell degranulation in mast cells. Upon IgE/antigen stimulation, the immunoreceptor tyrosine-based activation motif (ITAM) region of FcεRI receptor which is on the mast cell surface is phosphorylated and the initial signalling protein kinases Lyn and Syk are recruited to the ITAM (28,29). Then, the activated Lyn and Syk leads to phosphorylation of the transmembrane adaptor linker for activation of T cells (LAT). Phosphorylated LAT which is a scaffold for multimolecular signalling complexes and activates PLCγ through phosphorylation. The activated PLCγ hydrolyses phosphatidylinositol biphosphate (PIP2) to generate second signalling molecules IP3 and DAG, which activate PKCs including PKCδ to induce the mast cell degranulation (30,31). On the other hand, cross-linking of FcεRI also activates IKKß, which moves to the lipid raft fractions and phosphorylates synaptosomal-associated protein 23 (SNAP-23) leading to degranulation (7). Since PKCδ phosphorylates IKKα, but not IKKß (32), it is not likely that two signalling pathways are directly connected. In this study, novel function of CRT on phosphorylations of Lyn/Syk kinases in mast cells is elucidated for the first time. Furthermore, it is likely that this inhibitory effect of CRT on Lyn/Syk kinases negatively affected activities of their downstream signalling molecules including PLCγ, PKCδ, and IKKß, which leads to decrease in mast cell degranulation by CRT treatment. Besides the inhibitory effect of CRT on mast cell degranulation, here we provide additional evidence that CRT exerts anti-AD effects through inactivation of MAPK and NF­κB. It has been reported that CRT regulates the activities of MAPK and NF­κB in various cell types. In rhabdomyosarcoma, hepatoma, and breast carcinoma, CRT activates MAPK p38/JNK and suppresses ERK1/2, followed by caspase-independent apoptosis (10,33,34). In chronic myeloid leukaemia cells, CRT enhances TNF­α-induced apoptosis through the activation of MAPK p38 (35). In smooth muscle cells, CRT exerts anti-migration/invasion effect as it inhibits TNF­α/NF­κB signalling pathway (36).' Secondly, the authors wish to make the following changes to the Reference list: New references 30-32 have been inserted to the list, as follows: 30. Ozawa K, Szallasi Z, Kazanietz MG, Blumberg PM, Mischak H, Mushinski JF and Beaven MA: Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cell. J Biol Chem 268: 1749-1756, 1993. 31. Cho SH, Woo CH, Yoon SB and Kim JH: Protein kinase Cδ functions downstream of Ca2+ mobilization in FcεRI signaling to degranulation in mast cells. J Allergy Clin Immunol 114: 1085-1092, 2004. 32. Yamaguchi T, Miki Y and Yoshida K: Protein kinase Cδ activates IκB-kinase α to induce the p53 tumor suppressor in response to oxidative stress. Cell Signal 19: 2088-2097, 2007. The addition of these new references means that the former references 30-33 have been accordingly renumbered to references 33-36. Finally, the authors have revised Fig. 6C, as it appeared on p. 1102, in order to assist the understanding of the readers, and the corrected version of Fig. 6 appears on the next page. All these corrections have been approved by all the authors, with the exception of the first author, Sumiyasuren Buyanravjikh, who is no longer uncontactable. The authors regret that these errors were included in the paper, even though they did not substantially alter any of the major conclusions reported in the study, are grateful to the Editor for allowing them this opportunity to publish a Corrigendum, and apologize to the readership for any inconvenience caused. [the original article was published in Molecular Medicine Reports 18: 1095­1193, 2018; DOI: 10.3892/mmr.2018.9042].

14.
Drug Deliv ; 28(1): 1120-1131, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34121560

ABSTRACT

Oral route colon-targeted drug delivery systems (CDDSs) are desirable for the treatment of ulcerative colitis (UC). However, CDDSs are challenging owing to the physiological and anatomical barriers associated with the gastrointestinal tract (GIT). In this study, we developed an effective enzyme-triggered controlled release system using curcumin-cyclodextrin (CD-Cur) inclusion complex as core and low molecular weight chitosan and unsaturated alginate resulting nanoparticles (CANPs) as shell. The formed CD-Cur-CANPs showed a narrow particle-size distribution and a compact structure. In vitro drug release determination indicated that CD-Cur-CANPs showed pH-sensitive and α-amylase-responsive release characteristics. Furthermore, in vivo experiments demonstrated that oral administration of CD-Cur-CANPs had an efficient therapeutic efficacy, strong colonic biodistribution and accumulation, rapid macrophage uptake, promoted colonic epithelial barrier integrity and modulated production of inflammatory cytokines, reshaped the gut microbiota in mice with dextran sodium sulfate (DSS)-induced colitis. Taken together, our synthetic CD-Cur-CANPs are a promising synergistic colon-targeted approach for UC treatment.


Subject(s)
Colitis/drug therapy , Curcumin/pharmacology , Nanoparticles/chemistry , Administration, Oral , Alginates/chemistry , Animals , Chemistry, Pharmaceutical , Chitosan/chemistry , Curcumin/administration & dosage , Curcumin/adverse effects , Cytokines/drug effects , Delayed-Action Preparations , Dextran Sulfate/pharmacology , Disease Models, Animal , Drug Carriers/chemistry , Drug Liberation , Hydrogen-Ion Concentration , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Particle Size , beta-Cyclodextrins/chemistry
15.
J Enzyme Inhib Med Chem ; 36(1): 954-963, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33947294

ABSTRACT

Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Animals , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Nude , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
16.
Food Chem ; 339: 128027, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-32949915

ABSTRACT

κ-Carrageenase cleaves the ß-(1-4) linkages of κ-carrageenan into κ-carrageenan oligosaccharides (κ-COS), which exhibit various biological activities. In this study, a glycoside hydrolase (GH) family 16 κ-carrageenase gene, cgkA, was cloned from the marine bacterium Vibrio sp. SY01 and secretory expressed in a food-grade host, Yarrowia lipolytica. The specific activity of the purified CgkA was 12.5 U/mg. Determination of biochemical properties showed that CgkA was a thermo-tolerant enzyme, and 59.9% of the initial enzyme activity was recovered by immediately placing the sample at 20 °C for 30 min after enzymatic inactivation by boiling for 5 min. The recombinant CgkA was an endo-type enzyme, the main enzymatic product was κ-carradiaose (accounting for 87.6% of total products), and κ-carratetraose was the minimum substrate. Additionally, in vitro and in vivo analyses indicated that enzymatic κ-carradiaose possesses anti-oxidant activity. These features make CgkA as a promising candidate for biotechnological applications in the production of anti-oxidant κ-COS.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Bacterial Proteins/metabolism , Glycoside Hydrolases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Caco-2 Cells , Carrageenan/chemistry , Carrageenan/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Humans , Hydrolysis , Molecular Docking Simulation , Oligosaccharides/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vibrio/genetics , Yarrowia/genetics
17.
Biomedicines ; 8(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371458

ABSTRACT

Lung diseases, such as pulmonary hypertension and pulmonary fibrosis, are life-threatening diseases and have common features of vascular remodeling. During progression, extracellular matrix protein deposition and dysregulation of proteolytic enzymes occurs, which results in vascular stiffness and dysfunction. Although vasodilators or anti-fibrotic therapy have been mainly used as therapy owing to these characteristics, their effectiveness does not meet expectations. Therefore, a better understanding of the etiology and new therapeutic approaches are needed. Endothelial cells (ECs) line the inner walls of blood vessels and maintain vascular homeostasis by protecting vascular cells from pathological stimuli. Chronic stimulation of ECs by various factors, including pro-inflammatory cytokines and hypoxia, leads to ECs undergoing an imbalance of endothelial homeostasis, which results in endothelial dysfunction and is closely associated with vascular diseases. Emerging studies suggest that endothelial to mesenchymal transition (EndMT) contributes to endothelial dysfunction and plays a key role in the pathogenesis of vascular diseases. EndMT is a process by which ECs lose their markers and show mesenchymal-like morphological changes, and gain mesenchymal cell markers. Despite the efforts to elucidate these molecular mechanisms, the role of EndMT in the pathogenesis of lung disease still requires further investigation. Here, we review the importance of EndMT in the pathogenesis of pulmonary vascular diseases and discuss various signaling pathways and mediators involved in the EndMT process. Furthermore, we will provide insight into the therapeutic potential of targeting EndMT.

18.
Genes (Basel) ; 12(1)2020 12 23.
Article in English | MEDLINE | ID: mdl-33374832

ABSTRACT

Targeting the tumor vasculature is an attractive strategy for cancer treatment. However, the tumor vasculature is heterogeneous, and the mechanisms involved in the neovascularization of tumors are highly complex. Vasculogenic mimicry (VM) refers to the formation of vessel-like structures by tumor cells, which can contribute to tumor neovascularization, and is closely related to metastasis and a poor prognosis. Here, we report a novel function of AXL receptor tyrosine kinase (AXL) in the regulation of VM formation in breast cancer cells. MDA-MB-231 cells exhibited VM formation on Matrigel cultures, whereas MCF-7 cells did not. Moreover, AXL expression was positively correlated with VM formation. Pharmacological inhibition or AXL knockdown strongly suppressed VM formation in MDA-MB-231 cells, whereas the overexpression of AXL in MCF-7 cells promoted VM formation. In addition, AXL knockdown regulated epithelial-mesenchymal transition (EMT) features, increasing cell invasion and migration in MDA-MB-231 cells. Finally, the overexpression of microRNA-34a (miR-34a), which is a well-described EMT-inhibiting miRNA and targets AXL, inhibited VM formation, migration, and invasion in MDA-MB 231 cells. These results identify a miR-34a-AXL axis that is critical for the regulation of VM formation and may serve as a therapeutic target to inhibit tumor neovascularization.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Breast/blood supply , Breast/pathology , Breast Neoplasms/blood supply , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Neoplasm Invasiveness/genetics , Neovascularization, Pathologic/pathology , Axl Receptor Tyrosine Kinase
19.
Mol Ther Oncolytics ; 19: 105-126, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33102693

ABSTRACT

TRIP-Brs, a group of transcription factors (TFs) that modulate several mechanisms in higher organisms. However, the novel paradigm to target TRIP-Brs in specific cancer remains to be deciphered. In particular, comprehensive analysis of TRIP-Brs in clinicopathological and patients' prognosis, especially in breast cancer (BRCA), is being greatly ignored. Therefore, we explored the key roles of TRIP-Br expression, modulatory effects, mutations, immune infiltration, and prognosis in BRCA using multidimensional approaches. We found elevated levels of TRIP-Brs in numerous cancer tissues than normal. Higher expression of TRIP-Br-2/4/5 was shown to be positively associated with lower survival, tumor grade, and malignancy of patients with BRCA. Additionally, higher TRIP-Br-3/4 were also significantly linked with worse/short survival of BRCA patients. TRIP-Br-1/4/5 were significantly overexpressed and enhanced tumorigenesis in large-scale BRCA datasets. The mRNA levels of TRIP-Brs have been also correlated with tumor immune infiltrate in BRCA patients. In addition, TRIP-Brs synergistically play a pivotal role in central carbon metabolism, cancer-associated pathways, cell cycle, and thyroid hormone signaling, which evoke that TRIP-Brs may be a potential target for the therapy of BRCA. Thus, this investigation may lay a foundation for further research on TRIP-Br-mediated management of BRCA.

20.
BMB Rep ; 53(6): 291-298, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32438972

ABSTRACT

Tumor angiogenesis is an essential process for growth and metastasis of cancer cells as it supplies tumors with oxygen and nutrients. During tumor angiogenesis, many pro-angiogenic factors are secreted by tumor cells to induce their own vascularization via activation of pre-existing host endothelium. However, accumulating evidence suggests that vasculogenic mimicry (VM) is a key alternative mechanism for tumor vascularization when tumors are faced with insufficient supply of oxygen and nutrients. VM is a tumor vascularization mechanism in which tumors create a blood supply system, in contrast to tumor angiogenesis mechanisms that depend on pre-existing host endothelium. VM is closely associated with tumor progression and poor prognosis in many cancers. Therefore, inhibition of VM may be a promising therapeutic strategy and may overcome the limitations of anti-angiogenesis therapy for cancer patients. In this review, we provide an overview of the current anti-angiogenic therapies for ovarian cancer and the current state of knowledge regarding the links between microRNAs and the VM process, with a focus on the mechanism that regulates associated signaling pathways in ovarian cancer. Moreover, we discuss the potential for VM as a therapeutic strategy against ovarian cancer. [BMB Reports 2020; 53(6): 291-298].


Subject(s)
Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/drug therapy , Ovarian Neoplasms/drug therapy , Female , Humans , MicroRNAs/drug effects , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , Ovarian Neoplasms/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...