Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 23(13): 3117-3125, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28000284

ABSTRACT

A new mononuclear nickel(II) complex, [NiII (dpaq)Cl] (1), containing a tetradentate monoamido ligand, dpaq (dpaq=2-[bis(pyridin-2-ylmethyl)amino]-N-(quinolin-8-yl)acetamide), has been synthesized and characterized by IR spectroscopy, elemental analysis, and UV/Vis spectroscopy. The structure of the nickel complex has been determined by X-ray crystallography. This nonheme NiII complex 1 catalyzed the epoxidation reaction of a wide range of olefins with meta-chloroperoxybenzoic acid (m-CPBA) under mild conditions. Olefin epoxidation using this catalytic system has been proposed to involve a new reactive NiIV -oxo (4) species, based on the evidence from a PPAA (peroxyphenylacetic acid) probe, Hammett studies, H218 O exchange experiments, and ESI mass spectroscopic analysis. Moreover, the nature of solvent significantly influenced partitioning between heterolytic and homolytic O-O bond cleavage of the Ni-acylperoxo intermediate (2). The O-O bond of 2 proceeded predominantly through heterolytic cleavage in a protic solvent, such as CH3 OH. These results suggest that possibly a NiIV -oxo species is a common reactive intermediate in protic solvents. The two active oxidants, namely NiIV -oxo (3) and NiIII -oxo (4), which are responsible for stereospecific olefin epoxidation and radical-type oxidations, respectively, operate in aprotic solvents.

2.
Dalton Trans ; 45(4): 1727-36, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26698631

ABSTRACT

Using the sterically hindered terphenyl-based carboxylate, the tetrameric Co(ii) complex [Co4(µ3-OH)4(µ-O2CAr(4F-Ph))2(µ-OTf)2(Py)4] () with an asymmetric cubane-type core has been synthesized and fully characterized by X-ray diffraction, UV-vis spectroscopy, and electron paramagnetic resonance spectroscopy. Interestingly, the cubane-type cobalt cluster with 3-chloroperoxybenzoic acid as the oxidant was found to be very effective in the epoxidation of a variety of olefins, including terminal olefins which are more challenging targeting substrates. Moreover, this catalytic system showed a fast reaction rate and high epoxide yields under mild conditions. Based on product analysis and Hammett studies, the use of peroxyphenylacetic acid as a mechanistic probe, H2(18)O-exchange experiments, and EPR studies, it has been proposed that multiple reactive cobalt-oxo species Co(V)[double bond, length as m-dash]O and Co(IV)[double bond, length as m-dash]O were involved in the olefin epoxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...