Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Adv Sci (Weinh) ; : e2400858, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747156

ABSTRACT

Small molecule can be utilized to restore the effectiveness of existing major classes of antibiotics against antibiotic-resistant bacteria. In this study, it is demonstrated that celastrol, a natural compound, can modify the bacterial cell wall and subsequently render bacteria more suceptible to ß-lactam antibiotics. It is shown that celastrol leads to incomplete cell wall crosslinking by modulating levels of c-di-AMP, a secondary messenger, in methicillin-resistant Staphylococcus aureus (MRSA). This mechanism enables celastrol to act as a potentiator, effectively rendering MRSA susceptible to a range of penicillins and cephalosporins. Restoration of in vivo susceptibility of MRSA to methicillin is also demonstrated using a sepsis animal model by co-administering methicillin along with celastrol at a much lower amount than that of methicillin. The results suggest a novel approach for developing potentiators for major classes of antibiotics by exploring molecules that re-program metabolic pathways to reverse ß-lactam-resistant strains to susceptible strains.

2.
Ann Lab Med ; 44(4): 314-323, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38361427

ABSTRACT

The safety and efficacy of both cell and gene therapies have been demonstrated in numerous preclinical and clinical trials. Chimeric antigen receptor T (CAR-T) cell therapy, which leverages the technologies of both cell and gene therapies, has also shown great promise for treating various cancers. Advancements in pertinent fields have also highlighted challenges faced while manufacturing cell and gene therapy products. Potential problems and obstacles must be addressed to ease the clinical translation of individual therapies. Literature reviews of representative cell-based, gene-based, and cell-based gene therapies with regard to their general manufacturing processes, the challenges faced during manufacturing, and QC specifications are limited. We review the general manufacturing processes of cell and gene therapies, including those involving mesenchymal stem cells, viral vectors, and CAR-T cells. The complexities associated with the manufacturing processes and subsequent QC/validation processes may present challenges that could impede the clinical progression of the products. This article addresses these potential challenges. Further, we discuss the use of the manufacturing model and its impact on cell and gene therapy.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Immunotherapy, Adoptive , Neoplasms/genetics , Genetic Therapy
3.
Dement Neurocogn Disord ; 22(1): 28-42, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36814699

ABSTRACT

Background and Purpose: We investigated the correlation between the deep distribution of white matter hyperintensity (WMH) (dWMH: WMH in deep and corticomedullary areas, with minimal periventricular WMH) and a positive agitated saline contrast echocardiography result. Methods: We retrospectively recruited participants with comprehensive dementia evaluations, an agitated saline study, and brain imaging. The participants were classified into two groups according to WMH-distributions: dWMH and dpWMH (mainly periventricular WMH with or without deep WMH.) We hypothesized that dWMH is more likely associated with embolism, whereas dpWMH is associated with small-vessel diseases. We compared the clinical characteristics, WMH-distributions, and positive rate of agitated saline studies between the two groups. Results: Among 90 participants, 27 and 12 met the dWMH and dpWMH criteria, respectively. The dWMH-group was younger (62.2±7.5 vs. 78.9±7.3, p<0.001) and had a lower prevalence of hypertension (29.6% vs. 75%, p=0.008), diabetes mellitus (3.7% vs. 25%, p=0.043), and hyperlipidemia (33.3% vs. 83.3%, p=0.043) than the dpWMH-group. Regarding deep white matter lesions, the number of small lesions (<3 mm) was higher in the dWMH-group(10.9±9.7) than in the dpWMH-group (3.1±6.4) (p=0.008), and WMH was predominantly distributed in the border-zones and corticomedullary areas. Most importantly, the positive agitated saline study rate was higher in the dWMH-group than in the dpWMH-group (81.5% vs. 33.3%, p=0.003). Conclusions: The dWMH-group with younger participants had fewer cardiovascular risk factors, showed more border-zone-distributions, and had a higher agitated saline test positivity rate than the dpWMH-group, indicating that corticomedullary or deep WMH-distribution with minimal periventricular WMH suggests embolic etiologies.

4.
Nano Lett ; 23(2): 476-490, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36638236

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease with multifactorial pathogenesis. However, most current therapeutic approaches for AD target a single pathophysiological mechanism, generally resulting in unsatisfactory therapeutic outcomes. Recently, mesenchymal stem cell (MSC) therapy, which targets multiple pathological mechanisms of AD, has been explored as a novel treatment. However, the low brain retention efficiency of administered MSCs limits their therapeutic efficacy. In addition, autologous MSCs from AD patients may have poor therapeutic abilities. Here, we overcome these limitations by developing iron oxide nanoparticle (IONP)-incorporated human Wharton's jelly-derived MSCs (MSC-IONPs). IONPs promote therapeutic molecule expression in MSCs. Following intracerebroventricular injection, MSC-IONPs showed a higher brain retention efficiency under magnetic guidance. This potentiates the therapeutic efficacy of MSCs in murine models of AD. Furthermore, human Wharton's jelly-derived allogeneic MSCs may exhibit higher therapeutic abilities than those of autologous MSCs in aged AD patients. This strategy may pave the way for developing MSC therapies for AD.


Subject(s)
Alzheimer Disease , Mesenchymal Stem Cells , Neurodegenerative Diseases , Wharton Jelly , Humans , Mice , Animals , Aged , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Magnetic Iron Oxide Nanoparticles , Cell Differentiation
5.
Arch Med Res ; 54(2): 86-94, 2023 02.
Article in English | MEDLINE | ID: mdl-36702668

ABSTRACT

BACKGROUD AND AIM: Endometriosis is one of the most common gynecological diseases associated with chronic pelvic pain, infertility, and cancer. However, its molecular pathogenesis remains unclear. This study aimed to identify key genes involved in the pathogenesis of endometriosis. METHODS: Bioinformatic analyses were perfomed to identify key differentially expressed genes (DEGs), transcription factors (TFs), and functionally enriched pathways. Effect of SPI1 on migration, invasion, expression of ADH1B, MYH11, and PLN were analyzed in human endometriotic cells. RESULTS: By screening three transcriptome datasets from the GEO for overlapping DEGs between eutopic and ectopic endometria in patients with endometriosis, we found that the expression of ADH1B, MYH11, and PLN was markedly upregulated in the ectopic endometrium. Knockdown of ADH1B, MYH11, and PLN significantly inhibited the migration and invasion of human endometriotic 12Z cells. Additionally, gene set enrichment analysis revealed that epithelial-mesenchymal transition gene signature was positively correlated with ADH1B, MYH11, and PLN expression. Notably, the TF SPI1 was found to regulate the expression of these three genes in the endometriotic tissues and 12TZ cells. Moreover, SPI1 expression was associated with the invasion of endometriotic cells and was increased in the ectopic endometrium of patients with endometriosis. CONCLUSION: These data suggest that SPI1 plays a key role in the progression of endometriosis by regulating ADH1B, MYH11, and PLN expression and may therefore serve as a potential prognostic and therapeutic factor for endometriosis.


Subject(s)
Endometriosis , Female , Humans , Endometriosis/metabolism , Up-Regulation , Epithelial-Mesenchymal Transition , Phenotype , Endometrium/metabolism , Endometrium/pathology
6.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500714

ABSTRACT

To test whether homologous recombination repair (HRR) depends on FOXO3a, a cellular aging model of human dermal fibroblast (HDF) and tet-on flag-h-FOXO3a transgenic mice were studied. HDF cells transfected with over-expression of wt-h-FOXO3a increased the protein levels of MRE11, BRCA1, BRIP1, and RAD50, while knock-down with siFOXO3a decreased them. The protein levels of MRE11, BRCA1, BRIP1, RAD50, and RAD51 decreased during cellular aging. Chromatin immunoprecipitation (ChIP) assay was performed on FOXO3a binding accessibility to FOXO consensus sites in human MRE11, BRCA1, BRIP1, and RAD50 promoters; the results showed FOXO3a binding decreased during cellular aging. When the tet-on flag-h-FOXO3a mice were administered doxycycline orally, the protein and mRNA levels of flag-h-FOXO3a, MRE11, BRCA1, BRIP1, and RAD50 increased in a doxycycline-dose-dependent manner. In vitro HRR assays were performed by transfection with an HR vector and I-SceI vector. The mRNA levels of the recombined GFP increased after doxycycline treatment in MEF but not in wt-MEF, and increased in young HDF comparing to old HDF, indicating that FOXO3a activates HRR. Overall, these results demonstrate that MRE11, BRCA1, BRIP1, and RAD50 are transcriptional target genes for FOXO3a, and HRR activity is increased via transcriptional activation of MRE11, BRCA1, BRIP1, and RAD50 by FOXO3a.


Subject(s)
DNA Repair , Recombinational DNA Repair , Humans , Mice , Animals , Transcriptional Activation , DNA Helicases/genetics , RNA, Messenger , DNA-Binding Proteins/genetics , Acid Anhydride Hydrolases/genetics , BRCA1 Protein/genetics
7.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296616

ABSTRACT

Although C17 polyacetylenes from Panax ginseng exhibit cytotoxic properties against various tumor cells, there have been few experiments on epithelial ovarian carcinoma cells. This study aimed to investigate the cytotoxic effects of C17 polyacetylenes from P. ginseng against ovarian cancer cell lines. Four unreported (1-4) and fifteen known (5-19) C17 polyacetylenes were obtained from the roots of P. ginseng using repeated chromatography (open column, MPLC, and preparative HPLC). The chemical structures of all the compounds were determined by analyzing their spectroscopic data (NMR, IR, and optical rotation) and HR-MS. The structures of new polyacetylenes were elucidated as (3S,8S,9R,10R)-(-)-heptadeca-9,10-epoxy-4,6-diyne-3,8-diyl diacetate (1), (3S,8S,9R,10R)-(-)-heptadeca-1-en-9,10-epoxy-4,6-diyne-3,8-diyl diacetate (2), (-)-haptadeca-9,10-epoxy-8-methoxy-4,6-diyne-3,11-diol (3), and (3R,9R,10R)-(+)-3-acetoxy-9,10-dihydroxyheptadeca-1-en-4,6-diyne (4), named ginsenoynes O, P, and Q, and 3-acetyl panaxytriol, respectively. Subsequently, in vitro experiments on A2780 and SKOV3 human epithelial ovarian carcinoma cells were performed to assess the cytotoxic properties of the isolates. Among the isolates, panaquinquecol 4 (15) exhibited the most remarkable cytotoxic effects on both human ovarian cancer cells A2780 (IC50 value of 7.60 µM) and SKOV3 (IC50 value of 27.53 µM). Therefore, C17 polyacetylenes derived from P. ginseng may warrant further investigation for their therapeutic potential in epithelial ovarian cancer.


Subject(s)
Ovarian Neoplasms , Panax , Humans , Female , Panax/chemistry , Carcinoma, Ovarian Epithelial , Polyacetylene Polymer , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Polyynes/pharmacology , Polyynes/chemistry , Plant Roots/chemistry
8.
Biomedicines ; 10(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36009433

ABSTRACT

We have recently reported on how transplantation of human mesenchymal stem cells (MSCs) into the mouse parenchyma generated immune responses. To facilitate the clinical translation of MSC-based AD therapy, the safety and efficacy of human derived MSCs (hMSCs) must be confirmed in the pre-clinical stage. Thus, it is imperative to investigate measures to reduce immune responses exerted via xenotransplantation. In this study, immunosuppressants were co-administered to mice that had received injections of hMSCs into the parenchyma. Prior to performing experiments using transgenic AD mice (5xFAD), varying immunosuppressant regimens were tested in wild-type (WT) mice and the combination of dexamethasone and tofacitinib (DexaTofa) revealed to be effective in enhancing the persistence of hMSCs. According to transcriptome sequencing and immunohistochemical analyses, administration of DexaTofa reduced immune responses generated via transplantation of hMSCs in the parenchyma of 5xFAD mice. Significant mitigation of amyloid burden, however, was not noted following transplantation of hMSCs alone or hMSCs with DexaTofa. The efficacy of the immunosuppressant regimen should be tested in multiple AD mouse models to promote its successful application and use in AD stem cell therapy.

9.
J Korean Med Sci ; 37(31): e244, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35942557

ABSTRACT

BACKGROUND: To deliver therapeutics into the brain, it is imperative to overcome the issue of the blood-brain-barrier (BBB). One of the ways to circumvent the BBB is to administer therapeutics directly into the brain parenchyma. To enhance the treatment efficacy for chronic neurodegenerative disorders, repeated administration to the target location is required. However, this increases the number of operations that must be performed. In this study, we developed the IntraBrain Injector (IBI), a new implantable device to repeatedly deliver therapeutics into the brain parenchyma. METHODS: We designed and fabricated IBI with medical grade materials, and evaluated the efficacy and safety of IBI in 9 beagles. The trajectory of IBI to the hippocampus was simulated prior to surgery and the device was implanted using 3D-printed adaptor and surgical guides. Ferumoxytol-labeled mesenchymal stem cells (MSCs) were injected into the hippocampus via IBI, and magnetic resonance images were taken before and after the administration to analyze the accuracy of repeated injection. RESULTS: We compared the planned vs. insertion trajectory of IBI to the hippocampus. With a similarity of 0.990 ± 0.001 (mean ± standard deviation), precise targeting of IBI was confirmed by comparing planned vs. insertion trajectories of IBI. Multiple administrations of ferumoxytol-labeled MSCs into the hippocampus using IBI were both feasible and successful (success rate of 76.7%). Safety of initial IBI implantation, repeated administration of therapeutics, and long-term implantation have all been evaluated in this study. CONCLUSION: Precise and repeated delivery of therapeutics into the brain parenchyma can be done without performing additional surgeries via IBI implantation.


Subject(s)
Ferrosoferric Oxide , Mesenchymal Stem Cells , Animals , Brain/diagnostic imaging , Brain/surgery , Dogs , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods
10.
Biomedicines ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35327365

ABSTRACT

Previously we conducted a Phase I/IIa clinical trial in nine patients with mild to moderate Alzheimer's disease (AD). Unexpectedly, all patients who were given injections of human-umbilical cord-blood-derived mesenchymal stem cells (hUCB-MSCs) developed fever which subsided after 24 h. Several possible causes of transient fever include bacterial infection, inflammatory reaction from the cell culture media composition, or the cells themselves. To delineate these causes, first we compared the levels of several cytokines in the cerebrospinal fluid (CSF) of AD patients who received saline (placebo) or hUCB-MSC injections, respectively. Compared to the placebo group, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and c-reactive protein (CRP) levels were increased in the hUCB-MSC group. Negative bacterial culture results of the CSF samples and the fact that the same hUCB-MSC administration procedure was used for both the placebo and hUCB-MSC groups ruled out the bacterial infection hypothesis. However, it was not yet clear as to whether the transplanted cells or the composition of the cell culture media generated the transient fever. Therefore, we carried out intracerebroventricular (ICV) injections of hUCB-MSCs in a 5xFAD mouse model of AD. Interestingly, we discovered that pro-inflammatory cytokine levels were higher in the hUCB-MSC group. Taken together, our data suggest that the cause of transient inflammatory response observed from both the clinical trial and mouse study was due to the transplanted hUCB-MSCs.

11.
Antioxidants (Basel) ; 11(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35204176

ABSTRACT

The rhizomes of Alpinia galanga (Thai ginger) have been used extensively as a spice in Southeast Asian and Arabian cuisines and reported to possess a wide range of biological properties, such as antioxidant, antimicrobial, and antibacterial. However, the specific molecular and cellular mechanisms underlying the anti-tumor effects induced by Thai ginger and its corresponding active compounds have been poorly characterized. We found that upon EtOH extraction, Thai ginger extract exhibits cytotoxic activity (IC50 < 10 µg/mL) and triggers cell death via caspase-dependent apoptosis in human ovarian cancer cells. Among the three major compounds isolated from the extract, 1'-acetoxyeugenol acetate (AEA) exhibited potent cytotoxic activity in human ovarian cancer cells, SKOV3 and A2780. AEA induced apoptotic cell death through the activation of caspases-3 and -9. Notably, AEA enhanced the intracellular levels of reactive oxygen species (ROS), and the application of an antioxidant markedly reversed AEA-induced apoptosis of ovarian cancer cells. The knockdown of p47phox, a subunit of NADPH oxidase, suppressed both the pro-apoptotic and ROS-inducing effects of AEA. Additionally, the activation of the mitogen-activated protein kinase (MAPK) pathway by AEA through ROS regulation was found to be involved in AEA-induced apoptosis. Altogether, these results suggest that AEA exhibits potent apoptosis-inducing activity through the activation of the intrinsic pathway via ROS-mediated MAPK signaling in human ovarian cancer cells.

12.
Alzheimers Res Ther ; 13(1): 154, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521461

ABSTRACT

BACKGROUNDS: Alzheimer's disease is the most common cause of dementia, and currently, there is no disease-modifying treatment. Favorable functional outcomes and reduction of amyloid levels were observed following transplantation of mesenchymal stem cells (MSCs) in animal studies. OBJECTIVES: We conducted a phase I clinical trial in nine patients with mild-to-moderate Alzheimer's disease dementia to evaluate the safety and dose-limiting toxicity of three repeated intracerebroventricular injections of human umbilical cord blood-derived MSCs (hUCB-MSCs). METHODS: We recruited nine mild-to-moderate Alzheimer's disease dementia patients from Samsung Medical Center, Seoul, Republic of Korea. Four weeks prior to MSC administration, the Ommaya reservoir was implanted into the right lateral ventricle of the patients. Three patients received a low dose (1.0 × 107 cells/2 mL), and six patients received a high dose (3.0 × 107 cells/2 mL) of hUCB-MSCs. Three repeated injections of MSCs were performed (4-week intervals) in all nine patients. These patients were followed up to 12 weeks after the first hUCB-MSC injection and an additional 36 months in the extended observation study. RESULTS: After hUCB-MSC injection, the most common adverse event was fever (n = 9) followed by headache (n = 7), nausea (n = 5), and vomiting (n = 4), which all subsided within 36 h. There were three serious adverse events in two participants that were considered to have arisen from the investigational product. Fever in a low dose participant and nausea with vomiting in another low dose participant each required extended hospitalization by a day. There were no dose-limiting toxicities. Five participants completed the 36-month extended observation study, and no further serious adverse events were observed. CONCLUSIONS: Three repeated administrations of hUCB-MSCs into the lateral ventricle via an Ommaya reservoir were feasible, relatively and sufficiently safe, and well-tolerated. Currently, we are undergoing an extended follow-up study for those who participated in a phase IIa trial where upon completion, we hope to gain a deeper understanding of the clinical efficacy of MSC AD therapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT02054208. Registered on 4 February 2014. ClinicalTrials.gov NCT03172117. Registered on 1 June 2017.


Subject(s)
Alzheimer Disease , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Alzheimer Disease/therapy , Animals , Fetal Blood , Follow-Up Studies , Humans
13.
Cell Transplant ; 30: 9636897211019025, 2021.
Article in English | MEDLINE | ID: mdl-34044601

ABSTRACT

It has been widely accepted that mesenchymal stem cells (MSCs) can evade the immune surveillance of the recipient. However, emerging research cast doubt on whether MSCs are intrinsically immune-privileged. Previously, we observed that the transplantation of human MSCs (hMSCs) into the mouse parenchyma attracted a high infiltration of leukocytes into the injection tract. Thus, in order to reduce the immune responses generated by hMSCs, the aim of this study was to assess which immunosuppressant condition (dexamethasone only, tacrolimus only, or dexamethasone and tacrolimus together) would not only reduce the overall immune response but also enhance the persistence of MSCs engrafted into the caudate putamen of wild-type C57BL/6 mice. According to immunohistochemical analysis, compared to the hMSC only group, the administration of immunosuppressants (for all three conditions) reduced the infiltration of CD45-positive leukocytes and neutrophils at the site of injection. The highest hMSC persistence was detected from the group that received combinatorial administrations of dexamethasone and tacrolimus. Moreover, compared to the immunocompetent WT mouse, higher MSC engraftment was observed from the immunodeficient BALB/c mice. The results of this study support the use of immunosuppressants to tackle MSC-mediated immune responses and to possibly prolong the engraftment of transplanted MSCs.


Subject(s)
Immunity/drug effects , Immunosuppressive Agents/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Parenchymal Tissue/transplantation , Animals , Immunosuppressive Agents/pharmacology , Mice
14.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977637

ABSTRACT

Mesenchymal stem cells (MSCs) are a useful source for cell-based therapy of a variety of immune-mediated diseases, including neurodegenerative disorders. However, poor migration ability and survival rate of MSCs after brain transplantation hinder the therapeutic effects in the disease microenvironment. Therefore, we attempted to use a preconditioning strategy with pharmacological agents to improve the cell proliferation and migration of MSCs. In this study, we identified ethionamide via the screening of a drug library, which enhanced the proliferation of MSCs. Preconditioning with ethionamide promoted the proliferation of Wharton's jelly-derived MSCs (WJ-MSCs) by activating phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)1/2 signaling. Preconditioning with ethionamide also enhanced the migration ability of MSCs by upregulating expression of genes associated with migration, such as C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine ligand 12 (CXCL12). Furthermore, preconditioning with ethionamide stimulated the secretion of paracrine factors, including neurotrophic and growth factors in MSCs. Compared to naïve MSCs, ethionamide-preconditioned MSCs (ETH-MSCs) were found to survive longer in the brain after transplantation. These results suggested that enhancing the biological process of MSCs induced by ethionamide preconditioning presents itself as a promising strategy for enhancing the effectiveness of MSCs-based therapies.


Subject(s)
Cell Movement/drug effects , Cell Proliferation/drug effects , Ethionamide/pharmacology , Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/metabolism , Animals , Brain/cytology , Brain/metabolism , Heterografts , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice
15.
Int J Mol Sci ; 21(15)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752272

ABSTRACT

Closely linked to Alzheimer's disease (AD), the pathological spectrum of vascular cognitive impairment (VCI) is known to be wide and complex. Considering that multiple instead of a single targeting approach is considered a treatment option for such complicated diseases, the multifaceted aspects of mesenchymal stem cells (MSCs) make them a suitable candidate to tackle the heterogeneity of VCI. MSCs were delivered via the intracerebroventricular (ICV) route in mice that were subjected to VCI by carotid artery stenosis. VCI was induced in C57BL6/J mice wild type (C57VCI) mice by applying a combination of ameroid constrictors and microcoils, while ameroid constrictors alone were bilaterally applied to 5xFAD (transgenic AD mouse model) mice (5xVCI). Compared to the controls (minimal essential medium (MEM)-injected C57VCI mice), changes in spatial working memory were not noted in the MSC-injected C57VCI mice, and unexpectedly, the mortality rate was higher. In contrast, compared to the MEM-injected 5xVCI mice, mortality was not observed, and the spatial working memory was also improved in MSC-injected 5xVCI mice. Disease progression of the VCI-induced mice seems to be affected by the method of carotid artery stenosis and due to this heterogeneity, various factors must be considered to maximize the therapeutic benefits exerted by MSCs. Factors, such as the optimal MSC injection time point, cell concentration, sacrifice time point, and immunogenicity of the transplanted cells, must all be adequately addressed so that MSCs can be appropriately and effectively used as a treatment option for VCI.


Subject(s)
Alzheimer Disease/therapy , Cognitive Dysfunction/therapy , Dementia, Vascular/therapy , Disease Models, Animal , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Alzheimer Disease/genetics , Animals , Carotid Stenosis/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Dementia, Vascular/etiology , Dementia, Vascular/physiopathology , Disease Progression , Humans , Injections, Intraventricular , Kaplan-Meier Estimate , Memory, Short-Term/physiology , Mice, Inbred C57BL , Mice, Transgenic , Transplantation, Heterologous
16.
Int J Mol Sci ; 21(9)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357509

ABSTRACT

Due to their multifactorial aspects, mesenchymal stem cells (MSCs) have been widely established as an attractive and potential candidate for the treatment of a multitude of diseases. A substantial number of studies advocate that MSCs are poorly immunogenic. In several studies, however, immune responses were observed following injections of xenogeneic donor MSCs. In this study, the aim was to examine differences in immune responses exerted based on transplantations of xenogeneic, syngeneic, and allogeneic MSCs in the wild-type mouse brain. Xenogeneic, allogeneic, and syngeneic MSCs were intracerebrally injected into C57BL/6 mice. Mice were sacrificed one week following transplantation. Based on immunohistochemical (IHC) analysis, leukocytes and neutrophils were expressed at the injection sites in the following order (highest to lowest) xenogeneic, allogeneic, and syngeneic. In contrast, microglia and macrophages were expressed in the following order (highest to lowest): syngeneic, allogeneic, and xenogeneic. Residual human MSCs in the mouse brain were barely detected after seven days. Although the discrepancy between leukocytes versus macrophages/microglia infiltration should be resolved, our results overall argue against the previous notions that MSCs are poorly immunogenic and that modulation of immune responses is a prerequisite for preclinical and clinical studies in MSC therapy of central nervous system diseases.


Subject(s)
Leukocytes/metabolism , Macrophages/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Microglia/metabolism , Neutrophils/metabolism , Animals , Cells, Cultured , Female , Humans , Immunity , Mice , Mice, Inbred C57BL , Transplantation, Heterologous/methods , Transplantation, Homologous/methods , Transplantation, Isogeneic/methods
17.
Int J Mol Sci ; 21(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316637

ABSTRACT

Recently, an asymmetric vascular compromise approach that replicates many aspects of human vascular cognitive impairment (VCI) has been reported. The present study aimed to first investigate on the reproducibility in the disease progression of this newly reported VCI model using wild-type C57BL6/J mice. The second aim was to assess how this approach will affect the disease progression of transgenic Alzheimer's disease (AD) 5XFAD mice subjected to VCI. C57BL6/J and 5XFAD mice were subjected to VCI by placing an ameroid constrictor on the right CCA and a microcoil on the left CCA. Infarcts and hippocampal neuronal loss did not appear predominantly in the right (ameroid side) as expected but randomly in both hemispheres. The mortality rate of C57BL6/J mice was unexpectedly high. Inducing VCI reduced amyloid burden in the hippocampi of 5XFAD mice. Since VCI is known to be complex and complicated, the heterogeneous disease progression observed from this current study shares close resemblance to the clinical manifestation of VCI. This heterogeneity, however, makes it challenging to test novel treatment options using this model. Further study is warranted to tackle the heterogeneous nature of VCI.


Subject(s)
Alzheimer Disease/pathology , Amyloid/metabolism , Cognitive Dysfunction/mortality , Dementia, Vascular/mortality , Hippocampus/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/mortality , Animals , Cognitive Dysfunction/etiology , Dementia, Vascular/etiology , Disease Models, Animal , Disease Progression , Female , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mortality , Reproducibility of Results
18.
Exp Mol Med ; 52(4): 691-701, 2020 04.
Article in English | MEDLINE | ID: mdl-32341419

ABSTRACT

Spi-C is an SPI-group erythroblast transformation-specific domain transcription factor expressed during B-cell development. Here, we report that Spi-C is a novel receptor activator of nuclear factor-κB ligand (RANKL)-inducible protein that positively regulates RANKL-mediated osteoclast differentiation and function. Knockdown of Spi-C decreased the expression of RANKL-induced nuclear factor of activated T-cells, cytoplasmic 1, receptor activator of nuclear factor-κB (RANK), and tartrate-resistant acid phosphatase (TRAP), resulting in a marked decrease in the number of TRAP-positive multinucleated cells. Spi-C-transduced bone marrow-derived monocytes/macrophages (BMMs) displayed a significant increase in osteoclast formation in the presence of RANKL. In addition, Spi-C-depleted cells failed to show actin ring formation or bone resorption owing to a marked reduction in the expression of RANKL-mediated dendritic cell-specific transmembrane protein and the d2 isoform of vacuolar (H+) ATPase V0 domain, which are known osteoclast fusion-related genes. Interestingly, RANKL stimulation induced the translocation of Spi-C from the cytoplasm into the nucleus during osteoclastogenesis, which was specifically blocked by inhibitors of p38 mitogen-activated protein kinase (MAPK) or PI3 kinase. Moreover, Spi-C depletion prevented RANKL-induced MAPK activation and the degradation of inhibitor of κB-α (IκBα) in BMMs. Collectively, these results suggest that Spi-C is a novel positive regulator that promotes both osteoclast differentiation and function.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , RANK Ligand/metabolism , Animals , Biomarkers , Bone Resorption , Cell Differentiation/genetics , Humans , Immunohistochemistry , Macrophages/metabolism , Osteogenesis/genetics , Phosphatidylinositol 3-Kinases/metabolism , RNA, Small Interfering/genetics , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Tissue Eng Regen Med ; 17(3): 323-333, 2020 06.
Article in English | MEDLINE | ID: mdl-32227286

ABSTRACT

BACKGROUND: Despite promising advances in stem cell-based therapy, the treatment of ischemic cardiovascular diseases remains a big challenge due to both the insufficient in vivo viability of transplanted cells and poor angiogenic potential of stem cells. The goal of this study was to develop therapeutic human cardiac progenitor cells (hCPCs) for ischemic cardiovascular diseases with a novel M13 peptide carrier. METHOD: In this study, an engineered M13 peptide carrier was successfully generated using a QuikChange Kit. The cellular function of M13 peptide carrier-treated hCPCs was assessed using a tube formation assay and scratch wound healing assay. The in vivo engraftment and cell survival bioactivities of transplanted cells were demonstrated by immunohistochemistry after hCPC transplantation into a myocardial infarction animal model. RESULTS: The engineered M13RGD+SDKP peptide carrier, which expressed RGD peptide on PIII site and SDKP peptide on PVIII site, did not affect morphologic change and proliferation ability in hCPCs. In contrast, hCPCs treated with M13RGD+SDKP showed enhanced angiogenic capacity, including tube formation and migration capacity. Moreover, transplanted hCPCs with M13RGD+SDKP were engrafted into the ischemic region and promoted in vivo cell survival. CONCLUSION: Our present data provides a promising protocol for CPC-based cell therapy via short-term cell priming of hCPCs with engineered M13RGD+SDKP before cell transplantation for treatment of cardiovascular disease.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Myocardial Infarction/therapy , Peptides/metabolism , Stem Cell Transplantation , Stem Cells/drug effects , Animals , Bacteriophage M13/genetics , Cardiovascular Diseases , Cell Survival , Endothelial Cells , Genetic Engineering , Humans , Male , Mice, Inbred BALB C , Myocytes, Cardiac/transplantation , Peptides/pharmacology , Wound Healing
20.
Int J Mol Sci ; 21(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32070050

ABSTRACT

Mesenchymal stem cells (MSCs) are considered as promising therapeutic agents for neurodegenerative disorders because they can reduce underlying pathology and also repair damaged tissues. Regarding the delivery of MSCs into the brain, intravenous and intra-arterial routes may be less feasible than intraparenchymal and intracerebroventricular routes due to the blood-brain barrier. Compared to the intraparenchymal or intracerebroventricular routes, however, the intrathecal route may have advantages: this route can deliver MSCs throughout the entire neuraxis and it is less invasive since brain surgery is not required. The objective of this study was to investigate the distribution of human Wharton's jelly-derived MSCs (WJ-MSCs) injected via the intrathecal route in a rat model. WJ-MSCs (1 × 106) were intrathecally injected via the L2-3 intervertebral space in 6-week-old Sprague Dawley rats. These rats were then sacrificed at varying time points: 0, 6, and 12 h following injection. At 12 h, a significant number of MSCs were detected in the brain but not in other organs. Furthermore, with a 10-fold higher dose of WJ-MSCs, there was a substantial increase in the number of cells migrating to the brain. These results suggest that the intrathecal route can be a promising route for the performance of stem cell therapy for CNS diseases.


Subject(s)
Brain/metabolism , Central Nervous System Diseases/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Brain/pathology , Central Nervous System Diseases/pathology , Disease Models, Animal , Humans , Injections, Spinal/methods , Rats , Rats, Sprague-Dawley , Wharton Jelly/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...