Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 15190, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709845

ABSTRACT

In this study, the potential of Chlorella sorokiniana JD1-1 for biodiesel production was evaluated using domestic wastewater (DWW) as a diluent for locally-generated livestock wastewater (LWW). This strategy aimed to provide sustainable wastewater treatment, reduce environmental impacts, enhance cost-effectiveness, and promote biodiesel production. LWW was diluted with tap water and DWW at ratios of 75%, 50%, and 25% (v/v), and the effects on microalgal growth, nutrient removal efficiency, and lipid yield were evaluated. Although the maximum biomass concentration was observed in the artificial growth medium (BG-11) (1170 mg L-1), 75% dilution using tap water (610 mg L-1) and DWW (780 mg L-1) yielded results comparable to the exclusive use of DWW (820 mg L-1), suggesting a potential for substitution. Total nitrogen (TN) removal rates were consistently high under all conditions, particularly in samples with higher concentrations of LWW. Conversely, total phosphorus (TP) concentrations decreased under most conditions, although some displayed large increases. Further studies are necessary to optimize the nutrient balance while maintaining economic feasibility and maximizing biodiesel production.


Subject(s)
Chlorella , Microalgae , Animals , Biofuels , Livestock , Wastewater , Culture Media , Water
2.
Bioresour Technol ; 384: 129314, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37311525

ABSTRACT

Magnesium aminoclay nanoparticles (MgANs) exert opposing effects on photosynthetic microalgae by promoting carbon dioxide (CO2) uptake and inducing oxidative stress. This study explored the potential application of MgAN in the production of algal lipids under high CO2 concentrations. The impact of MgAN (0.05-1.0 g/L) on cell growth, lipid accumulation, and solvent extractability varied among three tested oleaginous Chlorella strains (N113, KR-1, and M082). Among them, only KR-1 exhibited significant improvement in both total lipid content (379.4 mg/g cell) and hexane lipid extraction efficiency (54.5%) in the presence of MgAN compared to those of controls (320.3 mg/g cell and 46.1%, respectively). This improvement was attributed to the increased biosynthesis of triacylglycerols and a thinner cell wall based on thin-layer chromatography and electronic microscopy, respectively. These findings suggest that using MgAN with robust algal strains can enhance the efficiency of cost-intensive extraction processes while simultaneously increasing the algal lipid content.


Subject(s)
Chlorella , Microalgae , Nanoparticles , Lipids , Carbon Dioxide , Triglycerides , Biomass
3.
Vaccines (Basel) ; 9(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062950

ABSTRACT

Cancer stem cells (CSCs), which have the capacity to self-renew and differentiate into various types of cells, are notorious for their roles in tumor initiation, metastasis, and therapy resistance. Thus, underlying mechanisms for their survival provide key insights into developing effective therapeutic strategies. A more recent focus has been on exosomes that play a role in transmitting information between CSCs and non-CSCs, resulting in activating CSCs for cancer progression and modulating their surrounding microenvironment. The field of CSC-derived exosomes (CSCEXs) for different types of cancer is still under exploration. A deeper understanding and further investigation into CSCEXs' roles in tumorigenicity and the identification of novel exosomal components are necessary for engineering exosomes for the treatment of cancer. Here, we review the features of CSCEXs, including surface markers, cargo, and biological or physiological functions. Further, reports on the immunomodulatory effects of CSCEXs are summarized, and exosome engineering for CSC-targeting is also discussed.

4.
Bioresour Technol ; 332: 125081, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33819856

ABSTRACT

Microalgal treatment of undiluted raw piggery wastewater is challenging due to ammonia toxicity and a deep dark color hampering photosynthesis. To overcome these problems, (1) a microalga (Coelastrella sp.) was isolated from an ammonia-rich environment, (2) the wastewater treatment was divided into two steps: a heterotrophic process followed by a mixotrophic process, and (3) a narrower transparent photobioreactor was employed with higher light intensity in the mixotrophic process. Coelastrella sp. removed 99% of ammonia, 92% of chemical oxygen demand (COD), and 100% of phosphorus during the 4-day process. Acetate in the wastewater relieved the ammonia stress on microalgae and promoted algal lipid and triacylglycerol productivity. Oxidative stability and low-temperature fluidity of triacylglycerols in lipids were improved by means of an altered fatty acid profile. Aside from the overall microalgal treatment performance, the proposed processing of piggery wastewater yielded a material suitable for possible production of algal biodiesel of better quality.


Subject(s)
Chlorella , Microalgae , Biofuels , Biomass , Lipids , Triglycerides , Wastewater
5.
Chemosphere ; 263: 127934, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32828055

ABSTRACT

A high ammonia concentration and chemical oxygen demand (COD) in piggery wastewater force it to be diluted before conventional microalgal treatment to reduce ammonia toxicity. Incomplete treatment of ammonia and COD in piggery wastewater may cause eutrophication, resulting in algal blooms. This study tried to treat raw piggery wastewater without dilution, using three strains of microalgae (Chlorella sorokiniana, Coelastrella sp. and Acutodesmus nygaardii) that outcompeted other algae under heterotrophic, mixotrophic, and autotrophic conditions, respectively, through adaptive evolution at high ammonia concentration. The three stepwise processes were designed to remove (1) small particles, COD, and phosphorus in the 1st heterotrophic C. sorokiniana cultivation, (2) ammonia and COD in the 2nd mixotrophic Coelastrella sp. cultivation, and (3) the remaining ammonia in the 3rd photoautotrophic A. nygaardii cultivation. To enhance ammonia uptake rate, each algal species were inoculated after 2-day nitrogen starvation. When the N-starved three species were inoculated at each step sequentially at 7 g/L for 2 days, the final phosphorus, COD, and ammonia removal efficiencies were 100% (16.4-0 mg/L), 92% (6820-545 mg/L), 90% (850-81 mg/L) and turbidity (99%) after total 6 days.


Subject(s)
Adaptation, Physiological/physiology , Ammonia/metabolism , Biodegradation, Environmental , Microalgae/physiology , Waste Disposal, Fluid/methods , Animals , Autotrophic Processes , Biological Oxygen Demand Analysis , Biomass , Chlorella , Heterotrophic Processes , Nitrogen , Phosphorus , Swine , Wastewater
6.
J Supercomput ; 76(5): 3882-3897, 2020.
Article in English | MEDLINE | ID: mdl-32435085

ABSTRACT

The fast-growing digital data generation leads to the emergence of the era of big data, which become particularly more valuable because approximately 70% of the collected data in the world comes from social media. Thus, the investigation of online social network services is of paramount importance. In this paper, we use the sentiment analysis, which detects attitudes and emotions toward issues of society posted in social media, to understand the actual economic situation. To this end, two steps are suggested. In the first step, after training the sentiment classifiers with several big data sources of social media datasets, we consider three types of feature sets: feature vector, sequence vector and a combination of dictionary-based feature and sequence vectors. Then, the performance of six classifiers is assessed: MaxEnt-L1, C4.5 decision tree, SVM-kernel, Ada-boost, Naïve Bayes and MaxEnt. In the second step, we collect datasets that are relevant to several economic words that the public use to explicitly express their opinions. Finally, we use a vector auto-regression analysis to confirm our hypothesis. The results show the statistically significant relationship between public sentiment and economic performance. That is, "depression" and "unemployment" lead to KOSPI. Also, it shows that the extracted keywords from the sentiment analysis, such as "price," "year-end-tax" and "budget deficit," cause the exchange rates.

7.
Bioresour Technol ; 307: 123270, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32253126

ABSTRACT

Improving the content and production of high-value ketocarotenoid pigments is critical for the commercialization of microalgal biorefineries. This study reported the use of magnesium aminoclay (MgAC) nanoparticles for enhancement of astaxanthin production by Haematococcus pluvialis in photoautotrophic cultures. Addition of 1.0 g/L MgAC significantly promoted cellular astaxanthin biosynthesis (302 ± 69 pg/cell), presumably by inducing tolerable oxidative stress, corresponding to a 13.7-fold higher production compared to that in the MgAC-untreated control (22 ± 2 pg/cell). The lipid content and cell size of H. pluvialis improved by 13.6- and 2.1-fold, respectively, compared to that of the control. Despite reduced cell numbers, the overall astaxanthin production (10.3 ± 0.4 mg/L) improved by 40% compared to the control (7.3 ± 0.6 mg/L), owing to improved biomass production. However, an MgAC dosage above 1.0 g/L inhibited biomass production by inducing electrostatic cell wall destabilization and aggregation. Therefore, MgAC-induced stimulation of algae varies widely based on their morphological and physiological characteristics.


Subject(s)
Microalgae , Nanoparticles , Magnesium , Xanthophylls
8.
Plant J ; 102(4): 761-778, 2020 05.
Article in English | MEDLINE | ID: mdl-31869481

ABSTRACT

Biological control agents including microbes and their products have been studied as sustainable crop protection strategies. Although aquatic microalgae have been recently introduced as a biological control agent, the underlying molecular mechanisms are largely unknown. The aim of the present study was to investigate the molecular mechanisms underlying biological control by microalga Chlorella fusca. Foliar application of C. fusca elicits induced resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 that activates plant immunity rather than direct antagonism. To understand the basis of C. fusca-triggered induced resistance at the transcriptional level, we conducted RNA sequencing (RNA-seq) analysis. RNA-seq data showed that, upon pathogen inoculation, C. fusca treatment primed the expression of cysteine-rich receptor-like kinases, WRKY transcription factor genes, and salicylic acid and jasmonic acid signalling-related genes. Intriguingly, the application of C. fusca primed pathogen-associated molecular pattern -triggered immunity, characterized by reactive oxygen species burst and callose deposition, upon flagellin 22 treatment. The attempts to find C. fusca determinants allowed us to identify d-lactic acid secreted in the supernatant of C. fusca as a defence priming agent. This is the first report of the mechanism of innate immune activation by aquatic microalga Chlorella in higher plants.


Subject(s)
Arabidopsis/immunology , Chlorella/immunology , Lactic Acid/metabolism , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Pseudomonas syringae/immunology , Arabidopsis/genetics , Arabidopsis/microbiology , Chlorella/genetics , Chlorella/microbiology , Cyclopentanes/metabolism , Flagellin/metabolism , Glucans/metabolism , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Immunity , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism
9.
J Microbiol Biotechnol ; 29(9): 1434-1443, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31434363

ABSTRACT

Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.


Subject(s)
Microalgae/metabolism , Sewage/microbiology , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Bacteria/growth & development , Bacteria/metabolism , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Biomass , Bioreactors/microbiology , Microalgae/growth & development , Microbial Consortia , Nitrogen/isolation & purification , Nitrogen/metabolism , Organic Chemicals/isolation & purification , Organic Chemicals/metabolism , Phosphorus/isolation & purification , Phosphorus/metabolism , Sewage/chemistry , Time Factors , Water Pollutants, Chemical/metabolism
10.
Article in English | MEDLINE | ID: mdl-33502297

ABSTRACT

A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterial strain, designated HC2T, was isolated from the phycosphere of Haematococcus lacustris NIES 144 culture. Strain HC2T was able to grow at pH 4.5-8.0, at 4-32 °C and in the presence of 0-2 % (w/v) NaCl. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain HC2T was affiliated to the genus Mucilaginibacter and shared the highest sequence similarity with Mucilaginibacter lappiensis ANJKI2T (98.20 %) and Mucilaginibacter sabulilitoris SMS-12T (98.06 %). Strain HC2T contained summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 0 as the major fatty acids (>10.0 %). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, two unidentified aminolipids and four unidentified lipids. The respiratory quinone was menaquinone 7 (MK-7). The genomic DNA G+C content was 42.0 %. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain HC2T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter inviolabilis sp. nov. is proposed. The type strain is HC2T (=KCTC 82084T=JCM 34116T).

11.
Bioresour Technol ; 258: 234-239, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29525599

ABSTRACT

This study used a single strain Ettlia sp. YC001 and two stages to optimize the production of three materials: lipids, lutein, and ß-carotene. In the cultivation stage for lutein production, different temperatures, light qualities, and intensities were applied. The highest biomass was obtained at 35 °C, but the maximum lutein productivity of 6.1 mg/L/d achieved at 25 °C. In the stress stage for lipids and ß-carotene production, UV-A and nitrogen starvation were applied. While UV stress increased the chlorophyll-a and ß-carotene content. The ß-carotene, oleic acid, and lipids significantly increased under nitrogen starvation with a high light intensity of 1200 µmol/m2/s, plus the Ettlia sp. changed from green to red. The results showed that Ettlia sp. can be an effective microalga for the co-production of lutein, ß-carotene, and biodiesel.


Subject(s)
Chlorophyta , Lipids , Biomass , Carotenoids , Light , beta Carotene
12.
Bioresour Technol ; 131: 515-20, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23453233

ABSTRACT

In order to reduce input cost for microalgal cultivation, we investigated the feasibility of wastewater taken from a municipal WWTP in Busan, Korea as wastewater nutrients. The wastewaters used in this study were the effluent from a primary settling tank (PS), the effluent from an anaerobic digestion tank (AD), the conflux of wastewaters rejected from sludge-concentrate tanks and dewatering facilities (CR), and two combined wastewaters of AD:PS (10:90, v/v) and AD:CR (10:90, v/v). Chlorella sp. ADE5, which was isolated from the AD, was selected for the feasibility test. The highest biomass production (3.01 g-dry cell weight per liter) of the isolate was obtained with the combined wastewater ADCR, and it was 1.72 times higher than that with BG 11 medium. Interestingly, the cells cultivated with wastewater containing PS wastewater were easily separated from the culture and improved lipid content, especially oleic acid content, in their cells.


Subject(s)
Biofuels/microbiology , Microalgae/chemistry , Microalgae/physiology , Wastewater/microbiology , Water Purification/methods , Cities , Feasibility Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...