Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Korean Med Sci ; 39(19): e171, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769924

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic led to a decrease in the seasonal incidence of many respiratory viruses worldwide due to the impact of nonpharmaceutical interventions (NPIs). However, as NPI measures were relaxed, respiratory viral infections re-emerged. We aimed to characterize the epidemiology of respiratory viruses in Korean children during post-COVID-19 pandemic years compared to that before the pandemic. METHODS: A nationwide prospective ongoing surveillance study has been conducted for detection of respiratory viruses between January 2017 and June 2023. We included data on adenovirus (AdV), human bocavirus (HBoV), human coronavirus (HCoV), human metapneumovirus (HMPV), human rhinovirus (HRV), influenza virus (IFV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV), which were detected in children and adolescents younger than 20 years. We analyzed the weekly detection frequency of individual viruses and the age distribution of the affected children. The study period was divided into prepandemic (2017-2019) and postpandemic (2021-2023) periods. RESULTS: A total of 19,589 and 14,068 samples were collected in the pre- and postpandemic periods, respectively. The overall detection rate of any virus throughout the study period was 63.1%, with the lowest occurring in the 2nd half of 2020 (50.6%) and the highest occurring in the 2nd half of 2021 (72.3%). Enveloped viruses (HCoV, HMPV, IFV, PIV, and RSV) almost disappeared, but nonenveloped viruses (AdV, HBoV, and HRV) were detected even during the peak of the COVID-19 pandemic. The codetection rate increased from 15.0% prepandemic to 19.1% postpandemic (P < 0.001). During the postpandemic period, a large out-of-season PIV and HMPV epidemic occurred, but the usual seasonality began to be restored in 2023. The mean age of children with each virus detected in 2023 was significantly greater than that in prepandemic years (P = 0.003 and 0.007 for AdV and HCoV, respectively; P < 0.001 for others). The mean age of children with IFV increased in 2022 (11.1 ± 5.2 years) from prepandemic years (7.9 ± 4.6 years) but decreased to 8.7 ± 4.1 years in 2023. CONCLUSION: With the relaxation of NPI measures, several seasonal respiratory viruses cocirculated with unusual seasonal epidemic patterns and were associated with increasing age of infected children.


Subject(s)
COVID-19 , Respiratory Tract Infections , SARS-CoV-2 , Humans , Child , COVID-19/epidemiology , Child, Preschool , Republic of Korea/epidemiology , Prospective Studies , Infant , Adolescent , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification , Male , Female , Infant, Newborn , Pandemics
2.
Virology ; 587: 109869, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673001

ABSTRACT

The Korea Disease Control and Prevention Agency (KDCA) has been conducting national genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). To monitor and characterize circulating SARS-CoV-2 variants in South Korea, 102,873 oropharyngeal/nasopharyngeal swab samples collected from patients with confirmed COVID-19 were sequenced, assigned lineages, and phylogenetically analyzed. Each wave followed a pattern of variants emerging first abroad and then spreading domestically. In 2020, B.41 lineage led the first wave, and B.1.497 dominated the second and third waves. In 2021, the fourth wave was driven by Delta (AY.69 and AY.122.5). In 2022, the fifth to seventh waves were dominated by Omicron sub-lineages BA.1/BA.1.1 and BA.2/BA.2.3, BA.5/BA.5.2, and BN.1, sequentially. The KDCA detected and monitored increasing variants in advance prior to large-scale epidemics, but the repeated emergence of new variants could threaten public health again. Therefore, it is important to continue to monitor and characterize emerging and circulating variants through national genomic surveillance.

3.
Osong Public Health Res Perspect ; 14(4): 272-278, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37652682

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been declared a global pandemic owing to the rapid spread of the causative agent, severe acute respiratory syndrome coronavirus 2. Its Delta and Omicron variants are more transmissible and pathogenic than other variants. Some debates have emerged on the mechanism of variants of concern. In the COVID-19 wave that began in December 2021, the Omicron variant, first reported in South Africa, became identifiable in most cases globally. The aim of this study was to provide data to inform effective responses to the transmission of the Omicron variant. METHODS: The Delta variant and the spike protein D614G mutant were compared with the Omicron variant. Viral loads from 5 days after symptom onset were compared using epidemiological data collected at the time of diagnosis. RESULTS: The Omicron variant exhibited a higher viral load than other variants, resulting in greater transmissibility within 5 days of symptom onset. CONCLUSION: Future research should focus on vaccine efficacy against the Omicron variant and compare trends in disease severity associated with its high viral load.

5.
Virol J ; 19(1): 215, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510212

ABSTRACT

BACKGROUND: Since the onset of the coronavirus disease-2019 (COVID-19) pandemic, the prevalence of respiratory infectious diseases, particularly, the flu epidemic, has considerably decreased. The low detection rate and decreased number of specimens have hindered the implementation of the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS), a sentinel surveillance system. Most patients with influenza-like illness visit the COVID-19 screening clinic; therefore, the number of samples collected in sentinel surveillance has decreased by more than 50%. Thus, the Korea Disease Control and Prevention Agency supplemented sentinel surveillance with non-sentinel surveillance by private medical diagnostic centers. We report here a delayed and unprecedented high detection of human parainfluenza virus (hPIV) in the Republic of Korea during the COVID-19 pandemic through sentinel and non-sentinel surveillance. We also examined the causes and implications of the changes in prevalence of hPIV.l METHODS: We collected data for 56,984 and 257,217 samples obtained through sentinel and non-sentinel surveillance, respectively. Eight viruses were confirmed using real-time reverse transcription-polymerase chain reaction (PCR) or real-time PCR. Some specimens from the sentinel surveillance were used for genetic characterization of hPIV type 3. RESULTS: In 2020, hPIV was rarely detected; however, it was detected in August 2021. The detection rate continued to increase considerably in September and reached over 70% in October, 2021. The detection rate of hPIV3 was significantly higher in infants and preschoolers aged 0-6 years in both sentinel and non-sentinel surveillance. Detection of hPIV was delayed in metropolitan areas compared to that in suburban regions. The hemagglutinin-neuraminidase sequences of hPIV3 generated in 2021 were not distinct from those detected prior to the COVID-19 pandemic. CONCLUSIONS: The operation of non-sentinel and sentinel surveillance to monitor respiratory viruses could sensitively detect an unprecedented revival of hPIV in the Republic of Korea during the COVID-19 pandemic.


Subject(s)
COVID-19 , Coronavirus , Influenza, Human , Respiratory Tract Infections , Infant , Humans , Pandemics , Influenza, Human/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Parainfluenza Virus 1, Human , Parainfluenza Virus 2, Human
6.
Open Forum Infect Dis ; 9(7): ofac237, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35855961

ABSTRACT

We analyzed the duration of infectivity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant by viral culture of respiratory samples collected daily from isolated patients with SARS-CoV-2 infection. The culture positivity rate of the Omicron variant was higher than that of the Delta variant within 8 days after symptom onset.

7.
Front Microbiol ; 13: 819745, 2022.
Article in English | MEDLINE | ID: mdl-35308391

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly, causing in COVID-19 being declared a global pandemic by the World Health Organization. The key variants include alpha, beta, gamma, and delta; these exhibit high viral transmission, pathogenicity, and immune evasion mechanisms. The delta variant, first confirmed in India, was detected in the majority of COVID-19 patients at the recent wave in the Republic of Korea. Here, the features of the delta variant were compared to the earlier waves, with focus on increased transmissibility. The viral load, from the initial days of infection to 14 days later, was compared based on epidemiological data collected at the time of confirmed diagnosis. The increased viral load observed in the delta variant-led infections influences the scale of the wave, owing to the increased rate of transmission. Infections caused by the delta variant increases the risk of hospitalization within 14 days after symptom onset, and the high viral load correlates with COVID-19 associated morbidity and mortality. Therefore, the future studies should compare the trend of disease severity caused by the high viral load of delta variant with previous waves and analyze the vaccine effects in light of the delta variant of fourth wave.

8.
Emerg Infect Dis ; 28(2): 415-419, 2022 02.
Article in English | MEDLINE | ID: mdl-35076365

ABSTRACT

We report the rapid emergence of severe acute respiratory syndrome coronavirus 2 lineages B.1.619 and B.1.620 in South Korea. The surge in frequency in a relatively short time emphasizes the need for ongoing monitoring for new lineages to track potential increases in transmissibility and disease severity and reductions in vaccine efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Republic of Korea/epidemiology , Vaccine Efficacy
9.
J Med Virol ; 94(4): 1717-1722, 2022 04.
Article in English | MEDLINE | ID: mdl-34862628

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic continues, reinfection is likely to become increasingly common. However, confirming COVID-19 reinfection is difficult because it requires whole-genome sequencing of both infections to identify the degrees of genetic differences. Since the first reported case of reinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Republic of Korea in April 2020, four additional cases were classified as suspected reinfection cases. We performed whole-genome sequencing of viral RNA extracted from swabs obtained at the initial infection and reinfection stages of these four suspected cases. The interval between initial infection and reinfection of all four suspected cases was more than 3 months. All four patients were young (10-29 years), and they displayed mild symptoms or were asymptomatic during the initial infection and reinfection episodes. The analysis of genome sequences combined with the epidemiological results revealed that only two of the four cases were confirmed as reinfection, and both were reinfected with the Epsilon variant. Due to the prolonged COVID-19 pandemic, the possibility of reinfections with SARS-CoV-2 variants is increasing, as reported in our study. Therefore, continuous monitoring of cases is necessary.


Subject(s)
COVID-19/virology , Genome, Viral/genetics , Reinfection/virology , SARS-CoV-2/genetics , Adolescent , Adult , COVID-19/epidemiology , Female , Genomics , Humans , Male , Mutation , Phylogeny , RNA, Viral/genetics , Reinfection/epidemiology , Republic of Korea/epidemiology , SARS-CoV-2/isolation & purification
10.
Virus Evol ; 7(2): veab077, 2021.
Article in English | MEDLINE | ID: mdl-34760282

ABSTRACT

Genomic epidemiology is a core component in investigating the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, the efficacy of control strategies in South Korea was evaluated using genomic epidemiology based on viral genome sequences of 2,065 SARS-CoV-2 cases identified in South Korea from January 2020 to December 2020. Phylogenetic analysis revealed that the majority of viruses introduced from inbound travelers did not further spread throughout South Korea; however, four distinct subgroups (KR.1-4, belonging to B.1.497, B.1, K.1 and B.41) of viruses caused local epidemics. After the introduction of enhanced social distancing, the viral population size and daily case numbers decreased, and KR.2-4 subgroups were extinguished from South Korea. Nevertheless, there was a subsequent increase in KR.1 subgroups after the downgrading of social distancing level. These results indicate that the international traveler quarantine system implemented in South Korea along with social distancing measures efficiently reduced the introduction and spread of SARS-CoV-2, but it was not completely controlled. An improvement of control strategies will be required to better control SARS-CoV-2, its variants, and future pandemic viruses.

12.
Viruses ; 13(10)2021 10 17.
Article in English | MEDLINE | ID: mdl-34696519

ABSTRACT

This study investigated the infectivity of severe acute respiratory syndrome (SARS-CoV-2) in individuals who re-tested positive for SARS-CoV-2 RNA after recovering from their primary illness. We investigated 295 individuals with re-positive SARS-CoV-2 polymerase chain reaction (PCR) test results and 836 of their close contacts. We attempted virus isolation in individuals with re-positive SARS-CoV-2 PCR test results using cell culture and confirmed the presence of neutralizing antibodies using serological tests. Viral culture was negative in all 108 individuals with re-positive SARS-CoV-2 PCR test results in whom viral culture was performed. Three new cases of SARS-CoV-2 infection were identified among household contacts using PCR. Two of the three new cases had had contact with the index patient during their primary illness, and all three had antibody evidence of past infection. Thus, there was no laboratory evidence of viral shedding and no epidemiological evidence of transmission among individuals with re-positive SARS-CoV-2 PCR test results.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Reinfection/virology , SARS-CoV-2/immunology , Virus Shedding/physiology , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/transmission , COVID-19 Serological Testing , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Polymerase Chain Reaction , Reinfection/immunology , Republic of Korea , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
13.
Influenza Other Respir Viruses ; 15(6): 721-731, 2021 11.
Article in English | MEDLINE | ID: mdl-34405546

ABSTRACT

BACKGROUND: After the detection of the first case of coronavirus disease 2019 (COVID-19) in South Korea on January 20, 2019, it has triggered three major outbreaks. To decrease the disease burden of COVID-19, social distancing and active mask wearing were encouraged, reducing the number of patients with influenza-like illness and altering the detection rate of influenza and respiratory viruses in the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS). We examined the changes in respiratory viruses due to COVID-19 in South Korea and virological causes of the high detection rate of human rhinovirus (hRV) in 2020. METHODS: We collected 52 684 oropharyngeal or nasopharyngeal swab samples from patients with influenza-like illness in cooperation with KINRESS from 2016 to 2020. Influenza virus and other respiratory viruses were confirmed using real-time RT-PCR. The weekly detection rate was used to compare virus detection patterns. RESULTS: Non-enveloped virus (hRV, human bocavirus, and human adenovirus) detection rates during the COVID-19 pandemic were maintained. The detection rate of hRV significantly increased in 2020 compared with that in 2019 and was negatively correlated with number of COVID-19-confirmed cases in 2020. The distribution of strains and genetic characteristics in hRV did not differ between 2019 and 2020. CONCLUSIONS: The COVID-19 pandemic impacted the respiratory virus detection rate. The extremely low detection rate of enveloped viruses resulted from efforts to prevent the spread of COVID-19 in South Korea. The high detection rate of hRV may be related to resistance against environmental conditions as a non-enveloped virus and the long period of viral shedding from patients.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Tract Infections , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Pandemics , Republic of Korea/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics , SARS-CoV-2
14.
Sci Rep ; 11(1): 14817, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285290

ABSTRACT

A real-time reverse transcription polymerase chain reaction (RT-qPCR) assay that does not require Emergency Use Authorization (EUA) reagents was tested and validated for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the early stages of the outbreak of coronavirus disease 2019 (COVID-19) in the Republic of Korea. Early diagnosis of COVID-19 enables timely treatment and the implementation of public health measures. We validated the sensitivity, specificity, precision, linearity, accuracy, and robustness of the RT-qPCR assay for SARS-CoV-2 detection and compared its performance with that of several EUA-approved kits. Our RT-qPCR assay was highly specific for SARS-CoV-2 as demonstrated by not amplifying 13 other viruses that cause respiratory diseases. The assay showed high linearity using a viral isolate from a patient with known COVID-19 as well as plasmids containing target SARS-CoV-2 genes as templates. The assay showed good repeatability and reproducibility with a coefficient of variation of 3%, and a SARS-CoV-2 limit of detection of 1 PFU/mL. The RT-qPCR-based assay is highly effective and can facilitate the early diagnosis of COVID-19 without the use of EUA-approved kits or reagents in the Republic of Korea.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/epidemiology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Chlorocebus aethiops , Humans , Limit of Detection , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Republic of Korea , Reverse Transcriptase Polymerase Chain Reaction/standards , Vero Cells
15.
Osong Public Health Res Perspect ; 12(1): 37-43, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33659153

ABSTRACT

Since a novel beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019, there has been a rapid global spread of the virus. Genomic surveillance was conducted on samples isolated from infected individuals to monitor the spread of genetic variants of SARS-CoV-2 in Korea. The Korea Disease Control and Prevention Agency performed whole genome sequencing of SARS-CoV-2 in Korea for 1 year (January 2020 to January 2021). A total of 2,488 SARS-CoV-2 cases were sequenced (including 648 cases from abroad). Initially, the prevalent clades of SARS-CoV-2 were the S and V clades, however, by March 2020, GH clade was the most dominant. Only international travelers were identified as having G or GR clades, and since the first variant 501Y.V1 was identified (from a traveler from the United Kingdom on December 22nd, 2020), a total of 27 variants of 501Y.V1, 501Y.V2, and 484K.V2 have been classified (as of January 25th, 2021). The results in this study indicated that quarantining of travelers entering Korea successfully prevented dissemination of the SARS-CoV-2 variants in Korea.

16.
Virol J ; 17(1): 94, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32631440

ABSTRACT

BACKGROUND: The emergence of influenza viruses resistant to anti-influenza drugs is a threat to global public health. The Korea Centers for Disease Control and Prevention operates the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) to monitor epidemics of influenza and Severe Acute Respiratory Infection (SARI) to identify mutated influenza viruses affecting drug resistance, pathogenesis, and transmission. METHODS: Oropharyngeal swab samples were collected from KINRESS and SARI during the 2018-2019 season. The specimens confirmed influenza virus using real-time RT-PCR on inoculated MDCK cells. HA and NA sequences of the influenza viruses were analyzed for phylogeny and mutations. Neuraminidase inhibition and hemagglutination inhibition assays were utilized to characterize the isolates. RESULTS: Two A(H1N1)pdm09 isolates harboring an H275Y substitution in the neuraminidase sequence were detected in patients with acute hematologic cancer. They had prolonged respiratory symptoms, with the virus present in the respiratory tract despite oseltamivir and peramivir treatment. Through the neuraminidase inhibition assay, both viruses were found to be resistant to oseltamivir and peramivir, but not to zanamivir. Although hemagglutinin and neuraminidase phylogenetic analyses suggested that the 2 A(H1N1)pdm09 isolates were not identical, their antigenicity was similar to that of the 2018-19 influenza vaccine virus. CONCLUSIONS: Our data indicate the utility of monitoring influenza-infected immunocompromised patients in general hospitals for the early detection of emerging neuraminidase inhibitor-resistant viruses and maintaining continuous laboratory surveillance of patients with influenza-like illness in sentinel clinics to monitor the spread of such new variants. Finally, characterization of the virus can inform the risk assessment for future epidemics and pandemics caused by drug-resistant influenza viruses.


Subject(s)
Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Immunocompromised Host , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Neuraminidase/antagonists & inhibitors , Acids, Carbocyclic/pharmacology , Adult , Amino Acid Substitution , Antiviral Agents/pharmacology , Female , Guanidines/pharmacology , Humans , Influenza, Human , Mutation , Oropharynx/virology , Oseltamivir/pharmacology , Phylogeny , Republic of Korea , Sequence Analysis, DNA , Zanamivir/pharmacology
17.
Osong Public Health Res Perspect ; 11(3): 112-117, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32528816

ABSTRACT

OBJECTIVES: Coronavirus Disease-19 (COVID-19) is a respiratory infection characterized by the main symptoms of pneumonia and fever. It is caused by the novel coronavirus severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), which is known to spread via respiratory droplets. We aimed to determine the rate and likelihood of SARS-CoV-2 transmission from COVID-19 patients through non-respiratory routes. METHODS: Serum, urine, and stool samples were collected from 74 hospitalized patients diagnosed with COVID-19 based on the detection of SARS-CoV-2 in respiratory samples. The SARS-CoV-2 RNA genome was extracted from each specimen and real-time reverse transcription polymerase chain reaction performed. CaCo-2 cells were inoculated with the specimens containing the SARS-COV-2 genome, and subcultured for virus isolation. After culturing, viral replication in the cell supernatant was assessed. RESULTS: Of the samples collected from 74 COVID-19 patients, SARS-CoV-2 was detected in 15 serum, urine, or stool samples. The virus detection rate in the serum, urine, and stool samples were 2.8% (9/323), 0.8% (2/247), and 10.1% (13/129), and the mean viral load was 1,210 ± 1,861, 79 ± 30, and 3,176 ± 7,208 copy/µL, respectively. However, the SARS-CoV-2 was not isolated by the culture method from the samples that tested positive for the SARS-CoV-2 gene. CONCLUSION: While the virus remained detectable in the respiratory samples of COVID-19 patients for several days after hospitalization, its detection in the serum, urine, and stool samples was intermittent. Since the virus could not be isolated from the SARS-COV-2-positive samples, the risk of viral transmission via stool and urine is expected to be low.

18.
Osong Public Health Res Perspect ; 11(1): 3-7, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32149036

ABSTRACT

OBJECTIVES: Following reports of patients with unexplained pneumonia at the end of December 2019 in Wuhan, China, the causative agent was identified as coronavirus (SARS-CoV-2), and the 2019 novel coronavirus disease was named COVID-19 by the World Health Organization. Putative patients with COVID-19 have been identified in South Korea, and attempts have been made to isolate the pathogen from these patients. METHODS: Upper and lower respiratory tract secretion samples from putative patients with COVID-19 were inoculated onto cells to isolate the virus. Full genome sequencing and electron microscopy were used to identify the virus. RESULTS: The virus replicated in Vero cells and cytopathic effects were observed. Full genome sequencing showed that the virus genome exhibited sequence homology of more than 99.9% with SARS-CoV-2 which was isolated from patients from other countries, for instance China. Sequence homology of SARS-CoV-2 with SARS-CoV, and MERS-CoV was 77.5% and 50%, respectively. Coronavirus-specific morphology was observed by electron microscopy in virus-infected Vero cells. CONCLUSION: SARS-CoV-2 was isolated from putative patients with unexplained pneumonia and intermittent coughing and fever. The isolated virus was named BetaCoV/Korea/KCDC03/2020.

19.
Emerg Infect Dis ; 25(5): 958-962, 2019 05.
Article in English | MEDLINE | ID: mdl-30753126

ABSTRACT

We evaluated genetic variation in Middle East respiratory syndrome coronavirus (MERS-CoV) imported to South Korea in 2018 using specimens from a patient and isolates from infected Caco-2 cells. The MERS-CoV strain in this study was genetically similar to a strain isolated in Riyadh, Saudi Arabia, in 2017.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Cell Line , Coronavirus Infections/history , Disease Outbreaks , History, 21st Century , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , Republic of Korea/epidemiology , Spike Glycoprotein, Coronavirus/genetics
20.
J Med Virol ; 90(7): 1177-1183, 2018 07.
Article in English | MEDLINE | ID: mdl-29488229

ABSTRACT

The prevalence of eight respiratory viruses detected in patients with acute respiratory infections (ARIs) in Korea was investigated through analysis of data recorded by the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) from 2013 to 2015. Nasal aspirate and throat swabs specimens were collected from 36 915 patients with ARIs, and viral nucleic acids were detected by real-time (reverse-transcription) polymerase chain reaction for eight respiratory viruses, including human respiratory syncytial viruses (HRSVs), influenza viruses (IFVs), human parainfluenza viruses (HPIVs), human coronaviruses (HCoVs), human rhinovirus (HRV), human adenovirus (HAdV), human bocavirus (HBoV), and human metapneumovirus (HMPV). The overall positive rate of patient specimens was 49.4% (18 236/36 915), 5% of which carried two or more viruses simultaneously. HRV (15.6%) was the most predominantly detected virus, followed by IFVs (14.6%), HAdV (7.5%), HPIVs (5.8%), HCoVs (4.2%), HRSVs (3.6%), HBoV (1.9%), and HMPV (1.6%). Most of the ARIs were significantly correlated with clinical symptoms of fever, cough, and runny nose. Although HRV and HAdV were frequently detected throughout the year in patients, other respiratory viruses showed apparent seasonality. HRSVs and IFVs were the major causative agents of acute respiratory diseases in infants and young children. Overall, this study demonstrates a meaningful relationship between viral infection and typical manifestations of known clinical features as well as seasonality, age distribution, and co-infection among respiratory viruses. Therefore, these data could provide useful information for public health management and to enhance patient care for primary clinicians.


Subject(s)
Epidemiological Monitoring , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Virus Diseases/epidemiology , Virus Diseases/virology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Coinfection/epidemiology , Coinfection/virology , Female , Humans , Infant , Infant, Newborn , Korea/epidemiology , Male , Middle Aged , Nasal Cavity/virology , Pharynx/virology , Prevalence , Real-Time Polymerase Chain Reaction , Seasons , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...