Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086682

ABSTRACT

This study explored the hydration reaction of ultra-high-performance concrete (UHPC) by using X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA) as analysis methods. The partial- or no-known crystal structure (PONKCS) method was adopted to quantify the two main amorphous phases of silica fume and C-S-H; such quantification is critical for understanding the hydration reaction of UHPC. The measured compressive strength was explained well by the degree of hydration found by the PONKCS method, particularly the amount of amorphous C-S-H. During heat treatment, the pozzolanic reaction was more intensified by efficiently consuming silica fume. After heat treatment, weak but continuous hydration was observed, in which the cement hydration reaction was dominant. Furthermore, the study discussed some limitations of using the PONKCS method for studying the complicated hydration assemblage of UHPC based on the results of TGA and NMR. Generally, the PONKCS method underestimated the content of silica fume in the early age of heat treatment. Furthermore, the structural evolution of C-S-H, confirmed by NMR, should be considered for more accurate quantification of C-S-H formed in UHPC. Nevertheless, PONKCS-based XRD could be useful for understanding and optimizing the material properties of UHPC undergoing heat treatment.

2.
BMC Nephrol ; 21(1): 367, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32842999

ABSTRACT

BACKGROUNDS: Glomerular diseases, a set of debilitating and complex disease entities, are related to mortality and morbidity. To gain insight into pathophysiology and novel treatment targets of glomerular disease, various types of biospecimens linked to deep clinical phenotyping including clinical information, digital pathology, and well-defined outcomes are required. We provide the rationale and design of the KOrea Renal biobank NEtwoRk System TOward Next-generation analysis (KORNERSTONE). METHODS: The KORNERSTONE, which has been initiated by Korea Centres for Disease Control and Prevention, is designed as a multi-centre, prospective cohort study and biobank for glomerular diseases. Clinical data, questionnaires will be collected at the time of kidney biopsy and subsequently every 1 year after kidney biopsy. All of the clinical data will be extracted from the electrical health record and automatically uploaded to the web-based database. High-quality digital pathologies are obtained and connected in the database. Various types of biospecimens are collected at baseline and during follow-up: serum, urine, buffy coat, stool, glomerular complementary DNA (cDNA), tubulointerstitial cDNA. All data and biospecimens are processed and stored in a standardised manner. The primary outcomes are mortality and end-stage renal disease. The secondary outcomes will be deterioration renal function, remission of proteinuria, cardiovascular events and quality of life. DISCUSSION: Ethical approval has been obtained from the institutional review board of each participating centre and ethics oversight committee. The KORNERSTONE is designed to deliver pioneer insights into glomerular diseases. The study design allows comprehensive, integrated and high-quality data collection on baseline laboratory findings, clinical outcomes including administrative data and digital pathologic images. This may provide various biospecimens and information to many researchers, establish the rationale for future more individualised treatment strategies for glomerular diseases. TRIAL REGISTRATION: NCT03929887 .


Subject(s)
Biological Specimen Banks , Databases, Factual , Glomerulonephritis/pathology , Kidney Failure, Chronic/pathology , Kidney/pathology , Glomerulonephritis/genetics , Glomerulonephritis/metabolism , Glomerulonephritis/therapy , Humans , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/therapy , Patient Outcome Assessment , Renal Replacement Therapy , Republic of Korea
3.
Materials (Basel) ; 13(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630269

ABSTRACT

This study investigated the heat-induced acceleration of cement hydration and pozzolanic reaction focusing on mechanical performance and structural modification at the meso- and micro-scale. The pozzolanic reaction was implemented by substituting 20 wt.% of cement with silica fume, considered the typical dosage of silica fume in ultra-high performance concrete. By actively consuming a limited amount of water and outer-formed portlandite on the unreacted cement grains, it was confirmed that high-temperature curing greatly enhances the pozzolanic reaction when compared with cement hydration under the same environment. The rate of strength development from the dual reactions of cement hydration and pozzolanic reaction was increased. After the high-temperature curing, further strength development was negligible because of the limited space availability and preconsumption of water under a low water-to-cement environment. Since the pozzolanic reaction does not directly require the anhydrous cement, the reaction can be more easily accelerated under restrained conditions because it does not heavily rely on the diffusion of the limited amount of water. Therefore, it significantly increases the mean chain length of the C-S-H, the size of C-S-H globules with a higher surface fractal dimension. This finding will be helpful in understanding the complicated hydration mechanism of high-strength concrete or ultra-high performance concrete, which has a very low water-to-cement ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...