Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Type of study
Language
Publication year range
1.
Environ Microbiol Rep ; 13(6): 871-877, 2021 12.
Article in English | MEDLINE | ID: mdl-34438473

ABSTRACT

Distributed across both the tropical Atlantic and Pacific oceans, the seagrass Halophilia ovalis stabilizes coastal sediment, thereby preventing shoreline erosion and is also an important food source for megaherbivores such as dugongs. However, seagrass meadows globally are under severe duress due to both climate change and anthropogenic activities. We characterized the mycobiome of Halophilia ovalis at seven sites in the Malay Peninsula using ITS1 rDNA amplicon sequences and investigated differences in fungal community structure. We found that geographic location was a significant factor shaping fungal communities and that marine sediment harboured significantly higher diversity when compared to H. ovalis leaves, roots and rhizomes. Taken together, it is likely that locality rather than specific plant structure determines fungal community structure in H. ovalis. Because the plant mycobiome is known to exert a strong effect on plant health, to maximize the success of future seagrass transplantation and restoration work we propose that these efforts consider the importance of seagrass mycobiomes at all stages.


Subject(s)
Mycobiome , Ecosystem , Geologic Sediments , Malaysia , Pacific Ocean , Plants
2.
IMA Fungus ; 11: 17, 2020.
Article in English | MEDLINE | ID: mdl-32974121

ABSTRACT

Mangrove forests are key tropical marine ecosystems that are rich in fungi, but our understanding of fungal communities associated with mangrove trees and their various organs remains limited because much of the diversity lies within the microbiome. In this study, we investigated the fungal communities associated with the mangrove tree Sonneratia alba throughout Peninsular Malaysia and Singapore. At each sampling location, we collected leaves, fruits, pneumatophores and sediment samples and performed amplicon sequencing of the ribosomal internal transcribed spacer 1 to characterise the associated communities. Results show distinct fungal communities at each sampled location with further differentiation according to the plant part. We find a significant distance decay of similarity, particularly for sediment samples due to the greater variability of sediment environments relative to the more stable fungal habitats provided by living plant organs. We are able to assign taxonomy to the majority of sequences from leaves and fruits, but a much larger portion of the sequences recovered from pneumatophores and sediment samples could not be identified. This pattern underscores the limited mycological research performed in marine environments and demonstrates the need for a concerted research effort on multiple species to fully characterise the coastal microbiome and its role in the functioning of marine ecosystems.

3.
Front Microbiol ; 10: 2456, 2019.
Article in English | MEDLINE | ID: mdl-31736902

ABSTRACT

Marine fungi on the whole remain understudied, especially in the highly diverse Southeast Asian region. We investigated the fungal communities associated with the mangrove tree Avicennia alba throughout Singapore and Peninsular Malaysia. At each sampling location, we examined ten individual trees, collecting leaves, fruits, pneumatophores, and an adjacent sediment sample from each plant. Amplicon sequencing of the fungal internal transcribed spacer 1 and subsequent analyses reveal significant differences in fungal communities collected from different locations and host structures. Mantel tests and multiple regression on distance matrices show a significant pattern of distance decay with samples collected close to one another having more similar fungal communities than those farther away. Submergence appears to drive part of the variation as host structures that are never submerged (leaves and fruits) have more similar fungal communities relative to those that are covered by water during high tide (pneumatophores and sediment). We suggest that fungi of terrestrial origins dominate structures that are not inundated by tidal regimes, while marine fungi dominate mangrove parts and sediments that are submerged by the incoming tide. Given the critical functions fungi play in all plants, and the important role they can have in determining the success of restoration schemes, we advocate that fungal community composition should be a key consideration in any mangrove restoration or rehabilitation project.

4.
Ecol Evol ; 9(19): 11288-11297, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31641473

ABSTRACT

Marine fungal biodiversity remains vastly understudied, and even less is known of their biogeography and the processes responsible for driving these distributions in marine environments. We investigated the fungal communities associated with the seagrass Enhalus acoroides collected from Singapore and Peninsular Malaysia to test the hypothesis that fungal communities are homogeneous throughout the study area. Seagrass samples were separated into different structures (leaves, roots, and rhizomes), and a sediment sample was collected next to each plant. Amplicon sequencing of the fungal internal transcribed spacer 1 and subsequent analysis revealed significant differences in fungal communities collected from different locations and different structures. We show a significant pattern of distance decay, with samples collected close to each other having more similar fungal communities in comparison with those that are more distant, indicating dispersal limitations and/or differences in habitat type are contributing to the observed biogeographic patterns. These results add to our understanding of the seagrass ecosystem in an understudied region of the world that is also the global epicenter of seagrass diversity. This work has implications for seagrass management and conservation initiatives, and we recommend that fungal community composition be a consideration for any seagrass transplant or restoration programme.

SELECTION OF CITATIONS
SEARCH DETAIL
...