Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
PLoS One ; 14(7): e0218139, 2019.
Article in English | MEDLINE | ID: mdl-31291289

ABSTRACT

BACKGROUND: The insulated isothermal PCR (iiPCR) technology enables consistent PCR amplification and detection in a simple heating device. A pan-dengue virus (DENV) RT-iiPCR, targeting the 5' untranslated region, was validated previously on the semi-automated POCKIT combo system (involving separate devices for nucleic acid extraction and PCR amplification/detection) to offer performance comparable to a laboratory real-time PCR. Working on the same technologies, a compact automated sample-in-answer-out system (POCKIT Central Nucleic Acid Analyser) has been available commercially for iiPCR, minimizing human error risks and allowing easy molecular bio-detection near points of need. Here, we evaluated the analytical and clinical performance of the pan-DENV RT-iiPCR on the fully automated system by comparison to those on the semi-automated system. METHODOLOGY/PRINCIPAL FINDINGS: Testing sera containing serial diluted DENV-1, -2, -3, or -4 cell culture stock, the pan-DENV RT-iiPCR system had similar 100% detection endpoints on the two systems; i.e. at 1, 10, 1 and 10 PFU/ml, respectively, on the fully automated system, and at 10, 1, 10 and 10 PFU/ml, respectively, on the semi-automated system. Furthermore, both fully automated and semi-automated PCR system can detect all four DENV serotypes in mosquitos. Clinical performance of the reagent on the two systems was evaluated by testing 60 human serum samples. Both systems detected the same 40 samples (ten DENV-1, -2, -3, and -4 positive each) and did not detect the other 20; 100% agreement (κ = 1) was found between the two systems. CONCLUSIONS/SIGNIFICANCE: With performance comparable to a previously validated system, the fully-automated PCR system allows applications of the pan-DENV reagent as a useful tool near points of need to facilitate easy, fast and effective detection of dengue virus and help mitigate versatile public health challenges in the control and management of dengue disease.


Subject(s)
Culicidae/virology , Dengue Virus/isolation & purification , Dengue/blood , Adult , Aged , Animals , Dengue/virology , Dengue Virus/genetics , Female , Humans , Male , Middle Aged , Point-of-Care Systems/economics , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/methods , Young Adult
2.
BMC Vet Res ; 15(1): 168, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31126297

ABSTRACT

BACKGROUND: Seneca Valley virus (SVV) has emerged in multiple countries in recent years. SVV infection can cause vesicular lesions clinically indistinguishable from those caused by other vesicular disease viruses, such as foot-and-mouth disease virus (FMDV), swine vesicular disease virus (SVDV), vesicular stomatitis virus (VSV), and vesicular exanthema of swine virus (VESV). Sensitive and specific RT-PCR assays for the SVV detection is necessary for differential diagnosis. Real-time RT-PCR (rRT-PCR) has been used for the detection of many RNA viruses. The insulated isothermal PCR (iiPCR) on a portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, SVV rRT-PCR and RT-iiPCR were developed and validated. RESULTS: Neither the SVV rRT-PCR nor the RT-iiPCR cross-reacted with any of the vesicular disease viruses (20 FMDV, two SVDV, six VSV, and two VESV strains), classical swine fever virus (four strains), and 15 other common swine viruses. Analytical sensitivities of the SVV rRT-PCR and RT-iiPCR were determined using serial dilutions of in vitro transcribed RNA as well as viral RNA extracted from a historical SVV isolate and a contemporary SVV isolate. Diagnostic performances were further evaluated using 125 swine samples by two approaches. First, nucleic acids were extracted from the 125 samples using the MagMAX™ kit and then tested by both RT-PCR methods. One sample was negative by the rRT-PCR but positive by the RT-iiPCR, resulting in a 99.20% agreement (124/125; 95% CI: 96.59-100%, κ = 0.98). Second, the 125 samples were tested by the taco™ mini extraction/RT-iiPCR and by the MagMAX™ extraction/rRT-PCR system in parallel. Two samples were positive by the MagMAX™/rRT-PCR system but negative by the taco™ mini/RT-iiPCR system, resulting in a 98.40% agreement (123/125; 95% CI: 95.39-100%, κ = 0.97). The two samples with discrepant results had relatively high CT values. CONCLUSIONS: The SVV rRT-PCR and RT-iiPCR developed in this study are very sensitive and specific and have comparable diagnostic performances for SVV RNA detection. The SVV rRT-PCR can be adopted for SVV detection in laboratories. The SVV RT-iiPCR in a simple field-deployable system could serve as a tool to help diagnose vesicular diseases in swine at points of need.


Subject(s)
Picornaviridae/isolation & purification , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Swine Diseases/virology , Animals , Genetic Variation , Picornaviridae/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Swine , Swine Diseases/diagnosis
3.
PLoS One ; 14(3): e0214328, 2019.
Article in English | MEDLINE | ID: mdl-30908535

ABSTRACT

BACKGROUND: Dengue fever, a mosquito-borne disease, is caused by dengue virus (DENV) which includes four major serotypes (DENV-1, -2, -3, and -4). Some serotypes cause more severe diseases than the other; severe dengue is associated with secondary infections by a different serotype. Timely serotyping can provide early warning of dengue epidemics to improve management of patients and outbreaks. A mobile insulated isothermal PCR (iiPCR) system is available to allow molecular detection of pathogens near points of need. METHODOLOGY/PRINCIPLE FINDINGS: In this study, side-by-side comparison with the CDC DENV-1-4 Real Time RT-PCR (qRT-PCR) was performed to evaluate the performance of four singleplex DENV-1-4 serotyping reverse transcription-iiPCR (RT-iiPCR) reagents for DENV subtyping on the mobile PCR system. The four RT-iiPCRs did not react with Zika virus and chikungunya virus; tests with serial dilutions of the four DENV serotypes made in human serum showed they had detection endpoints comparable to those of the reference method, indicating great analytical sensitivity and specificity. Clinical performance of the RT-iiPCR reagents was evaluated by testing 40 serum samples each (around 20 target serotype-positive and 20 DENV-negative); all four reagents had high agreement (97.5-100%) with the reference qRT-PCR. Moreover, testing of mosquitoes separately infected experimentally with each serotype showed that the four reagents detected specifically their target DENV serotypes in mosquito. CONCLUSIONS/SIGNIFICANCE: With analytical and clinical performance comparable to the reference qRT-PCR assay, the four index RT-iiPCR reagents on the field-deployable PCR system can serve as a useful tool for DENV detection near points of needs.


Subject(s)
Culicidae/virology , Dengue Virus/classification , Dengue/virology , RNA, Viral/blood , Animals , Dengue Virus/genetics , Female , Humans , Insect Vectors/virology , Point-of-Care Systems , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Serotyping
4.
Virus Res ; 261: 21-30, 2019 02.
Article in English | MEDLINE | ID: mdl-30543872

ABSTRACT

Cyprinid herpesvirus 3 (CyHV-3) or koi herpesvirus is a global pathogen causing mass mortality in koi and common carp, against which improved vaccines are urgently needed. In this study we investigated the role of four nonessential, but immunogenic envelope glycoproteins encoded by members of the ORF25 gene family (ORF25, ORF65, ORF148 and ORF149) during CyHV-3 replication. Single deletion of ORF65 did not affect in vitro replication, and deletion of ORF148 even slightly enhanced virus growth on common carp brain (CCB) cells. Deletions of ORF25 or ORF149 led to reduced plaque sizes and virus titers, which was due to delayed entry into host cells. An ORF148/ORF149 double deletion mutant exhibited wild-type like growth indicating opposing functions of the two proteins. Electron microscopy of CCB cells infected with either mutant did not indicate any effects on virion formation and maturation in nucleus or cytoplasm, nor on release of enveloped particles. The ORF148, ORF149 and double deletion mutants were also tested in animal experiments using juvenile carp, and proved to be insufficiently attenuated for use as live virus vaccines. However, surviving fish were protected against challenge with wild-type CyHV-3, demonstrating that these antibody inducing proteins are dispensable for an efficient immune response in vivo.


Subject(s)
Fish Diseases/prevention & control , Gene Deletion , Glycoproteins/metabolism , Herpesviridae Infections/veterinary , Herpesviridae/physiology , Viral Envelope Proteins/metabolism , Virus Replication , Animals , Carps , Cell Nucleus/virology , Cells, Cultured , Cytoplasm/virology , Fish Diseases/pathology , Fish Diseases/virology , Glycoproteins/genetics , Glycoproteins/immunology , Herpesviridae/genetics , Herpesviridae/immunology , Herpesviridae/ultrastructure , Herpesviridae Infections/pathology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , Microscopy, Electron , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Load , Viral Plaque Assay , Virion/ultrastructure , Virulence
5.
J Virol Methods ; 259: 116-121, 2018 09.
Article in English | MEDLINE | ID: mdl-29902491

ABSTRACT

Bovine leukemia virus (BLV) is a contagious, oncogenic deltaretrovirus of cattle with a worldwide distribution. In the US, over 40% of dairy cows are infected with the virus, and evidence of its economic impact is growing. This study evaluated the performance of a field-deployable automatic nucleic acid-extraction/insulated isothermal PCR (iiPCR) system for on-site BLV-proviral DNA detection in dairy cows compared with a conventional laboratory real-time PCR (rt-PCR). Assay performance was verified in parallel tests of 36 archived blood samples with 100% agreement (κ = 1.0; n = 36) between the iiPCR and conventional rt-PCR systems, and the limit of detection of the iiPCR assay was estimated to be 4 copies (genome equivalent) per reaction. The field-deployable iiPCR system was subsequently used on-farm to test freshly collected blood samples, and showed 100% agreement (κ = 1.0; n = 32) with the laboratory rt-PCR system. Fresh blood samples were collected on a second farm and tested on both systems, also with 100% agreement (κ = 1.0; n = 34). The field-deployable iiPCR/POCKIT™ combo system performs as well as a conventional laboratory-based rt-PCR system for detection of BLV proviral DNA in whole blood and may be a useful tool for on-farm evaluation of BLV-infection status in dairy cattle.


Subject(s)
DNA, Viral/isolation & purification , Enzootic Bovine Leukosis/diagnosis , Leukemia Virus, Bovine/isolation & purification , Molecular Diagnostic Techniques/methods , Point-of-Care Testing , Polymerase Chain Reaction/methods , Proviruses/isolation & purification , Animals , Automation/methods , Cattle , DNA, Viral/genetics , Enzootic Bovine Leukosis/virology , Leukemia Virus, Bovine/genetics , Proviruses/genetics
6.
Vet Res ; 49(1): 40, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29716648

ABSTRACT

Cyprinid herpesvirus 3 (CyHV-3) is the archetypal fish alloherpesvirus and the etiologic agent of a lethal disease in common and koi carp. To date, the genome sequences of only four CyHV-3 isolates have been published, but no comparisons of the biologic properties of these strains have been reported. We have sequenced the genomes of a further seven strains from various geographical sources, and have compared their growth in vitro and virulence in vivo. The major findings were: (i) the existence of the two genetic lineages previously described as European and Asian was confirmed, but inconsistencies between the geographic origin and genotype of some strains were revealed; (ii) potential inter-lineage recombination was detected in one strain, which also suggested the existence of a third, as yet unidentified lineage; (iii) analysis of genetic disruptions led to the identification of non-essential genes and their potential role in virulence; (iv) comparison of the in vitro and in vivo properties of strains belonging to the two lineages revealed that inter-lineage polymorphisms do not contribute to the differences in viral fitness observed; and (v) a negative correlation was observed among strains between viral growth in vitro and virulence in vivo. This study illustrates the importance of coupling genomic and biologic comparisons of viral strains in order to enhance understanding of viral evolution and pathogenesis.


Subject(s)
Carps , Fish Diseases/virology , Genome, Viral , Herpesviridae Infections/veterinary , Herpesviridae/genetics , Herpesviridae/pathogenicity , Animals , Herpesviridae/growth & development , Herpesviridae Infections/virology , Virulence , Whole Genome Sequencing/veterinary
7.
J Clin Microbiol ; 56(5)2018 05.
Article in English | MEDLINE | ID: mdl-29436418

ABSTRACT

Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI95%], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection.


Subject(s)
Dengue Virus/isolation & purification , Dengue/diagnosis , Molecular Diagnostic Techniques/methods , Point-of-Care Systems , RNA, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction , Dengue/blood , Dengue Virus/genetics , Humans , Molecular Diagnostic Techniques/standards , RNA, Viral/genetics , Reagent Kits, Diagnostic , Reproducibility of Results , Sensitivity and Specificity , Serogroup
8.
Poult Sci ; 96(1): 35-41, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27389062

ABSTRACT

Mycoplasma synoviae (MS), causing respiratory diseases, arthritis, and eggshell apex abnormalities in avian species, is an important pathogen in the poultry industry. Implementation of a biosecurity plan is important in MS infection management. Working on a field-deployable POCKIT™ device, an insulated isothermal polymerase chain reaction (iiPCR) assay has a potential for timely MS detection on the farm. The MS iiPCR assay had limit of detection 95% of about 9 genome equivalents by testing serial dilutions of a standard DNA. The detection endpoint of the assay for detection of MS genomic DNA was comparable to a reference real-time PCR. The assay did not crossreact with other important avian pathogens, including avian reovirus, Mycoplasma gallisepticum, Staphylococcus aureus, Escherichia coli, Pasteurella multocida, and Salmonella Pullorum. When 92 synovial fluid and respiratory tract swab samples collected from chickens, turkeys, and geese suspected of MS infection were tested, the clinical performance of the MS iiPCR had 97.8% agreement (Cohen's kappa value, 0.95) with that of the reference real-time PCR. In conclusion, the MS iiPCR/POCKIT™ system, working with field-deployable manual or automatic nucleic acid extraction methods, has potential to serve as a rapid and sensitive on-site tool to facilitate timely detection of MS.


Subject(s)
Bacterial Proteins/isolation & purification , Chickens , Lectins/isolation & purification , Mycoplasma Infections/veterinary , Mycoplasma synoviae/isolation & purification , Poultry Diseases/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Animals , Mycoplasma Infections/diagnosis , Mycoplasma Infections/microbiology , Poultry Diseases/microbiology , Real-Time Polymerase Chain Reaction/methods , Respiratory System/microbiology , Sensitivity and Specificity , Synovial Fluid/microbiology
9.
J Virol Methods ; 241: 58-63, 2017 03.
Article in English | MEDLINE | ID: mdl-27993615

ABSTRACT

Equine herpesvirus myeloencephalopathy (EHM), a major problem for the equine industry in the United States, is caused by equine herpesvirus-1 (EHV-1). In addition, EHV-1 is associated with upper respiratory disease, abortion, and chorioretinal lesions in horses. Here we describe the development and evaluation of an inexpensive, user-friendly insulated isothermal PCR (iiPCR) method targeting open reading 30 (ORF30) to detect both neuropathogenic and non-neuropathogenic strains on the field-deployable POCKIT™ device for point-of-need detection of EHV-1. The analytical sensitivity of the EHV-1 iiPCR assay was 13 genome equivalents per reaction. The assay did not cross react with ten non-target equine viral pathogens. Performance of the EHV-1 iiPCR assay was compared to two previously described real-time PCR (qPCR) assays in two laboratories by using 104 archived clinical samples. All 53 qPCR-positive and 46 of the 51 qPCR-negative samples tested positive and negative, respectively, by the iiPCR. The agreement between the two assays was 95.19% (confidence interval 90.48-99.90%) with a kappa value of 0.90. In conclusion, the newly developed EHV-1 iiPCR assay is robust to provide specificity and sensitivity comparable to qPCR assays for the detection of EHV-1 nucleic acid in clinical specimens.


Subject(s)
Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/isolation & purification , Horse Diseases/diagnosis , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Animals , DNA, Viral/genetics , DNA, Viral/isolation & purification , Encephalomyelitis/diagnosis , Encephalomyelitis/veterinary , Encephalomyelitis/virology , Herpesviridae Infections/diagnosis , Herpesviridae Infections/virology , Herpesvirus 1, Equid/genetics , Horse Diseases/virology , Horses , Open Reading Frames/genetics , Polymerase Chain Reaction/economics , Sensitivity and Specificity , Temperature
10.
J Virol Methods ; 234: 34-42, 2016 08.
Article in English | MEDLINE | ID: mdl-27060624

ABSTRACT

Recent outbreaks of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) in multiple countries have caused significant economic losses and remain a serious challenge to the swine industry. Rapid diagnosis is critical for the implementation of efficient control strategies before and during PEDV and PDCoV outbreaks. Insulated isothermal PCR (iiPCR) on the portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, a singleplex PEDV RT-iiPCR, a singleplex PDCoV RT-iiPCR, and a duplex PEDV/PDCoV real-time RT-PCR (rRT-PCR) commercial reagents targeting the M gene were compared to an N gene-based PEDV rRT-PCR and an M gene-based PDCoV rRT-PCR that were previously published and used as reference PCRs. All PCR assays were highly specific and did not cross react with other porcine enteric pathogens. Analytical sensitivities of the PEDV RT-iiPCR, PDCoV RT-iiPCR and duplex PEDV/PDCoV rRT-PCR were determined using in vitro transcribed RNA as well as viral RNA extracted from ten-fold serial dilutions of PEDV and PDCoV cell culture isolates. Performance of each PCR assay was further evaluated using 170 clinical samples (86 fecal swabs, 24 feces, 19 intestines, and 41 oral fluids). Compared to the reference PEDV rRT-PCR, the sensitivity, specificity and accuracy of the PEDV RT-iiPCR were 97.73%, 98.78%, and 98.24%, respectively, and those of the duplex PEDV/PDCoV rRT-PCR were 98.86%, 96.34%, and 97.65%, respectively. Compared to the reference PDCoV rRT-PCR, the sensitivity, specificity and accuracy of the PDCoV RT-iiPCR were 100%, 100%, and 100%, respectively, and those of the PEDV/PDCoV duplex rRT-PCR were 96.34%, 100%, and 98.24%, respectively. Overall, all three new PCR assays were comparable to the reference rRT-PCRs for detection of PEDV and/or PDCoV. The PEDV and PDCoV RT-iiPCRs are potentially useful tools for on-site detection and the duplex PEDV/PDCoV rRT-PCR provides a convenient method to simultaneously detect the two viruses and differentiate PEDV from PDCoV.


Subject(s)
Coronaviridae/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Polymerase Chain Reaction/methods , Porcine epidemic diarrhea virus/isolation & purification , Swine Diseases/diagnosis , Animals , Coronaviridae/genetics , Coronavirus Infections/virology , Feces/virology , Porcine epidemic diarrhea virus/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Swine , Swine Diseases/virology , Temperature
11.
J Clin Microbiol ; 54(6): 1528-1535, 2016 06.
Article in English | MEDLINE | ID: mdl-27030492

ABSTRACT

Dengue virus (DENV) infection is considered a major public health problem in developing tropical countries where the virus is endemic and continues to cause major disease outbreaks every year. Here, we describe the development of a novel, inexpensive, and user-friendly diagnostic assay based on a reverse transcription-insulated isothermal PCR (RT-iiPCR) method for the detection of all four serotypes of DENV in clinical samples. The diagnostic performance of the newly established pan-DENV RT-iiPCR assay targeting a conserved 3' untranslated region of the viral genome was evaluated. The limit of detection with a 95% confidence was estimated to be 10 copies of in vitro-transcribed (IVT) RNA. Sensitivity analysis using RNA prepared from 10-fold serial dilutions of tissue culture fluid containing DENVs suggested that the RT-iiPCR assay was comparable to the multiplex real-time quantitative RT-PCR (qRT-PCR) assay for DENV-1, -3, and -4 detection but 10-fold less sensitive for DENV-2 detection. Subsequently, plasma collected from patients suspected of dengue virus infection (n = 220) and individuals not suspected of dengue virus infection (n = 45) were tested by the RT-iiPCR and compared to original test results using a DENV NS1 antigen rapid test and the qRT-PCR. The diagnostic agreement of the pan-DENV RT-iiPCR, NS1 antigen rapid test, and qRT-PCR tests was 93.9%, 84.5%, and 97.4%, respectively, compared to the composite reference results. This new RT-iiPCR assay along with the portable POCKIT nucleic acid analyzer could provide a highly reliable, sensitive, and specific point-of-need diagnostic assay for the diagnosis of DENV in clinics and hospitals in developing countries.


Subject(s)
Dengue Virus/isolation & purification , Dengue/diagnosis , Molecular Diagnostic Techniques/methods , Point-of-Care Systems , Reverse Transcriptase Polymerase Chain Reaction/methods , Dengue Virus/genetics , Humans , Sensitivity and Specificity
12.
J Vet Diagn Invest ; 27(4): 510-5, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26185125

ABSTRACT

Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats.


Subject(s)
Feline Acquired Immunodeficiency Syndrome/diagnosis , Immunodeficiency Virus, Feline/isolation & purification , Animals , Cats , Feline Acquired Immunodeficiency Syndrome/virology , Immunodeficiency Virus, Feline/genetics , Point-of-Care Systems , Polymerase Chain Reaction/veterinary , RNA, Viral/analysis , Reproducibility of Results , Sensitivity and Specificity
13.
J Virol Methods ; 207: 66-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24992669

ABSTRACT

Equine influenza (EI) is an acute, highly contagious viral respiratory disease of equids. Currently, equine influenza virus (EIV) subtype H3N8 continues to be the most important respiratory pathogen of horses in many countries around the world. The need to achieve a rapid diagnosis and to implement effective quarantine and movement restrictions is critical in controlling the spread of EIV. In this study, a novel, inexpensive and user-friendly assay based on an insulated isothermal RT-PCR (iiRT-PCR) method on the POCKIT™, a field-deployable device, was described and validated for point-of-need detection of EIV-H3N8 in clinical samples. The newly established iiRT-PCR assay targeting the EIV HA3 gene was evaluated for its sensitivity using in vitro transcribed (IVT) RNA, as well as ten-fold serial dilutions of RNA extracted from the prototype H3N8 strain A/equine/Miami/1/63. Inclusivity and exclusivity panels were tested for specificity evaluation. Published real-time RT-PCR (rRT-PCR) assays targeting the NP and HA3 genes were used as the reference standards for comparison of RNA extracted from field strains and from nasal swab samples collected from experimentally infected horses, respectively. Limit of detection with a 95% probability (LoD95%) was estimated to be 11copies of IVT RNA. Clinical sensitivity analysis using RNA prepared from serial dilutions of a prototype EIV (Miami 1/63/H3N8) showed that the iiRT-PCR assay was about 100-fold more sensitive than the rRT-PCR assay targeting the NP gene of EIV subtype H3N8. The iiRT-PCR assay identified accurately fifteen EIV H3N8 strains and two canine influenza virus (CIV) H3N8 strains, and did not cross-react with H6N2, H7N7, H1N1 subtypes or any other equine respiratory viral pathogens. Finally, 100% agreement was found between the iiRT-PCR assay and the universal influenza virus type A rRT-PCR assay in detecting the EIV A/equine/Kentucky/7/07 strain in 56 nasal swab samples collected from experimentally inoculated horses. Therefore, the EIV H3N8 subtype specific iiRT-PCR assay along with the portable POCKIT™ Nucleic Acid Analyzer provides a highly reliable, sensitive and specific on-site detection system of both equine and canine influenza viruses.


Subject(s)
Influenza A Virus, H3N8 Subtype/isolation & purification , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , Veterinary Medicine/instrumentation , Veterinary Medicine/methods , Animals , Horses , Influenza A Virus, H3N8 Subtype/genetics , Orthomyxoviridae Infections/diagnosis , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Point-of-Care Systems , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...