Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Invest Ophthalmol Vis Sci ; 65(5): 1, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691092

ABSTRACT

Purpose: Elevated intraocular pressure (IOP) is thought to cause lamina cribrosa (LC) blood vessel distortions and potentially collapse, adversely affecting LC hemodynamics, reducing oxygenation, and triggering, or contributing to, glaucomatous neuropathy. We assessed the robustness of LC perfusion and oxygenation to vessel collapses. Methods: From histology, we reconstructed three-dimensional eye-specific LC vessel networks of two healthy monkey eyes. We used numerical simulations to estimate LC perfusion and from this the oxygenation. We then evaluated the effects of collapsing a fraction of LC vessels (0%-36%). The collapsed vessels were selected through three scenarios: stochastic (collapse randomly), systematic (collapse strictly by the magnitude of local experimentally determined IOP-induced compression), and mixed (a combination of stochastic and systematic). Results: LC blood flow decreased linearly as vessels collapsed-faster for stochastic and mixed scenarios and slower for the systematic one. LC regions suffering severe hypoxia (oxygen <8 mm Hg) increased proportionally to the collapsed vessels in the systematic scenario. For the stochastic and mixed scenarios, severe hypoxia did not occur until 15% of vessels collapsed. Some LC regions had higher perfusion and oxygenation as vessels collapsed elsewhere. Some severely hypoxic regions maintained normal blood flow. Results were equivalent for both networks and patterns of experimental IOP-induced compression. Conclusions: LC blood flow was sensitive to distributed vessel collapses (stochastic and mixed) and moderately vulnerable to clustered collapses (systematic). Conversely, LC oxygenation was robust to distributed vessel collapses and sensitive to clustered collapses. Locally normal flow does not imply adequate oxygenation. The actual nature of IOP-induced vessel collapse remains unknown.


Subject(s)
Intraocular Pressure , Optic Disk , Oxygen , Regional Blood Flow , Animals , Intraocular Pressure/physiology , Regional Blood Flow/physiology , Optic Disk/blood supply , Ocular Hypertension/physiopathology , Macaca mulatta , Imaging, Three-Dimensional , Disease Models, Animal
2.
Haematologica ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572553

ABSTRACT

Resistance to glucocorticoids (GCs), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-of-function experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GCresistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GCs against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.

3.
Acta Biomater ; 173: 135-147, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37967694

ABSTRACT

Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial to understanding their functions in bearing loads and maintaining tissue integrity. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 µm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9º vs. 0.6º and 3.1º vs. 2.7º. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue. STATEMENT OF SIGNIFICANCE: Peripapillary sclera (PPS) and lamina cribrosa (LC) collagen recruitment behaviors are central to the nonlinear mechanical behavior of the posterior pole of the eye. How PPS and LC collagen fibers recruit under stretch is crucial to develop constitutive models of the tissues but remains unclear. We used image-based stretch testing to characterize PPS and LC collagen fiber bundle recruitment under local stretch. We found that fiber-level stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers at a low stretch, but at 10% bundle stretch the two curves crossed with 75% bundles recruited. We also found that PPS and LC fibers had different uncrimping rates and non-zero waviness's when recruited.


Subject(s)
Collagen , Glaucoma , Animals , Sheep , Sclera , Extracellular Matrix , Microscopy, Polarization , Biomechanical Phenomena
4.
Exp Eye Res ; 237: 109701, 2023 12.
Article in English | MEDLINE | ID: mdl-37898229

ABSTRACT

The collagen fibers of the corneoscleral shell play a central role in the eye mechanical behavior. Although it is well-known that these fibers form a complex three-dimensional interwoven structure, biomechanical and microstructural studies often assume that the fibers are aligned in-plane with the tissues. This is convenient as it removes the out-of-plane components and allows focusing on the 2D maps of in-plane fiber organization that are often quite complex. The simplification, however, risks missing potentially important aspects of the tissue architecture and mechanics. In the cornea, for instance, fibers with high in-depth inclination have been shown to be mechanically important. Outside the cornea, the in-depth fiber orientations have not been characterized, preventing a deeper understanding of their potential roles. Our goal was to characterize in-depth collagen fiber organization over the whole corneoscleral shell. Seven sheep whole-globe axial sections from eyes fixed at an IOP of 50 mmHg were imaged using polarized light microscopy to measure collagen fiber orientations and density. In-depth fiber orientation distributions and anisotropy (degree of fiber alignment) accounting for fiber density were quantified over the whole sclera and in 15 regions: central cornea, peripheral cornea, limbus, anterior equator, equator, posterior equator, posterior sclera and peripapillary sclera on both nasal and temporal sides. Orientation distributions were fitted using a combination of a uniform distribution and a sum of π-periodic von Mises distributions, each with three parameters: primary orientation µ, fiber concentration factor k, and weighting factor a. To study the features of fibers that are not in-plane, i.e., fiber inclination, we quantified the percentage of inclined fibers and the range of inclination angles (half width at half maximum of inclination angle distribution). Our measurements showed that the fibers were not uniformly in-plane but exhibited instead a wide range of in-depth orientations, with fibers significantly more aligned in-plane in the anterior parts of the globe. We found that fitting the orientation distributions required between one and three π-periodic von Mises distributions with different primary orientations and fiber concentration factors. Regions of the posterior globe, particularly on the temporal side, had a larger percentage of inclined fibers and a larger range of inclination angles than anterior and equatorial regions. Variations of orientation distributions and anisotropies may imply varying out-of-plane tissue mechanical properties around the eye globe. Out-of-plane fibers could indicate fiber interweaving, not necessarily long, inclined fibers. Effects of small-scale fiber undulations, or crimp, were minimized by using tissues from eyes at high IOPs. These fiber features also play a role in tissue stiffness and stability and are therefore also important experimental information.


Subject(s)
Collagen , Cornea , Animals , Sheep , Collagen/chemistry , Extracellular Matrix , Sclera , Microscopy, Polarization , Biomechanical Phenomena
5.
Int J Mol Sci ; 24(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37628834

ABSTRACT

Thalassemia is a heterogeneous congenital hemoglobinopathy common in the Mediterranean region, Middle East, Indian subcontinent, and Southeast Asia with increasing incidence in Northern Europe and North America due to immigration. Iron overloading is one of the major long-term complications in patients with thalassemia and can lead to organ damage and carcinogenesis. Hepatocellular carcinoma (HCC) is one of the most common malignancies in both transfusion-dependent thalassemia (TDT) and non-transfusion-dependent thalassemia (NTDT). The incidence of HCC in patients with thalassemia has increased over time, as better chelation therapy confers a sufficiently long lifespan for the development of HCC. The mechanisms of iron-overloading-associated HCC development include the increased reactive oxygen species (ROS), inflammation cytokines, dysregulated hepcidin, and ferroportin metabolism. The treatment of HCC in patients with thalassemia was basically similar to those in general population. However, due to the younger age of HCC onset in thalassemia, regular surveillance for HCC development is mandatory in TDT and NTDT. Other supplemental therapies and experiences of novel treatments for HCC in the thalassemia population were also reviewed in this article.


Subject(s)
Carcinoma, Hepatocellular , Iron Overload , Liver Neoplasms , Thalassemia , Humans , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/etiology , Liver Neoplasms/therapy , Thalassemia/complications , Thalassemia/therapy , Patients , Iron
6.
J Phys Chem B ; 127(31): 6896-6902, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37494414

ABSTRACT

Stimulated Raman scattering (SRS) spectromicroscopy is a powerful technique that enables label-free detection of chemical bonds with high specificity. However, the low Raman cross section due to typical far-electronic resonance excitation seriously restricts the sensitivity and undermines its application to bio-imaging. To address this bottleneck, the electronic preresonance (EPR) SRS technique has been developed to enhance the Raman signals by shifting the excitation frequency toward the molecular absorption. A fundamental weakness of the previous demonstration is the lack of dual-wavelength tunability, making EPR-SRS only applicable to a limited number of species in the proof-of-concept experiment. Here, we demonstrate the EPR-SRS spectromicroscopy using a multiple-plate continuum (MPC) light source able to examine a single vibration mode with independently adjustable pump and Stokes wavelengths. In our experiments, the C═C vibration mode of Alexa 635 is interrogated by continuously scanning the pump-to-absorption frequency detuning throughout the entire EPR region enabled by MPC. The results exhibit 150-fold SRS signal enhancement and good agreement with the Albrecht A-term preresonance model. Signal enhancement is also observed in EPR-SRS images of the whole Drosophila brain stained with Alexa 635. With the improved sensitivity and potential to implement hyperspectral measurement, we envision that MPC-EPR-SRS spectromicroscopy can bring the Raman techniques closer to a routine in bio-imaging.

7.
Opt Lasers Eng ; 1662023 Jul.
Article in English | MEDLINE | ID: mdl-37193214

ABSTRACT

Collagen architecture determines the biomechanical environment in the eye, and thus characterizing collagen fiber organization and biomechanics is essential to fully understand eye physiology and pathology. We recently introduced instant polarized light microscopy (IPOL) that encodes optically information about fiber orientation and retardance through a color snapshot. Although IPOL allows imaging collagen at the full acquisition speed of the camera, with excellent spatial and angular resolutions, a limitation is that the orientation-encoding color is cyclic every 90 degrees (π/2 radians). In consequence, two orthogonal fibers have the same color and therefore the same orientation when quantified by color-angle mapping. In this study, we demonstrate IPOLπ, a new variation of IPOL, in which the orientation-encoding color is cyclic every 180 degrees (π radians). Herein we present the fundamentals of IPOLπ, including a framework based on a Mueller-matrix formalism to characterize how fiber orientation and retardance determine the color. The improved quantitative capability of IPOLπ enables further study of essential biomechanical properties of collagen in ocular tissues, such as fiber anisotropy and crimp. We present a series of experimental calibrations and quantitative procedures to visualize and quantify ocular collagen orientation and microstructure in the optic nerve head, a region in the back of the eye. There are four important strengths of IPOLπ compared to IPOL. First, IPOLπ can distinguish the orientations of orthogonal collagen fibers via colors, whereas IPOL cannot. Second, IPOLπ requires a lower exposure time than IPOL, thus allowing faster imaging speed. Third, IPOLπ allows visualizing non-birefringent tissues and backgrounds from tissue absorption, whereas both appear dark in IPOL images. Fourth, IPOLπ is cheaper and less sensitive to imperfectly collimated light than IPOL. Altogether, the high spatial, angular, and temporal resolutions of IPOLπ enable a deeper insight into ocular biomechanics and eye physiology and pathology.

8.
bioRxiv ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37215028

ABSTRACT

Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial for the development of constitutive models associating micro and macro scales. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 µm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9° vs. 0.6° and 3.1° vs. 2.7°. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue.

9.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36778384

ABSTRACT

Collagen architecture determines the biomechanical environment in the eye, and thus characterizing collagen fiber organization and biomechanics is essential to fully understand eye physiology and pathology. We recently introduced instant polarized light microscopy (IPOL) that encodes optically information about fiber orientation and retardance through a color snapshot. Although IPOL allows imaging collagen at the full acquisition speed of the camera, with excellent spatial and angular resolutions, a limitation is that the orientation-encoding color is cyclic every 90 degrees (π/2 radians). In consequence, two orthogonal fibers have the same color and therefore the same orientation when quantified by color-angle mapping. In this study, we demonstrate IPOLπ, a new variation of IPOL, in which the orientation-encoding color is cyclic every 180 degrees (π radians). Herein we present the fundamentals of IPOLπ, including a framework based on a Mueller-matrix formalism to characterize how fiber orientation and retardance determine the color. The improved quantitative capability of IPOLπ enables further study of essential biomechanical properties of collagen in ocular tissues, such as fiber anisotropy and crimp. We present a series of experimental calibrations and quantitative procedures to visualize and quantify ocular collagen orientation and microstructure in the optic nerve head, a region in the back of the eye. There are four important strengths of IPOLπ compared to IPOL. First, IPOLπ can distinguish the orientations of orthogonal collagen fibers via colors, whereas IPOL cannot. Second, IPOLπ requires a lower exposure time than IPOL, thus allowing faster imaging speed. Third, IPOLπ allows visualizing non-birefringent tissues and backgrounds from tissue absorption, whereas both appear dark in IPOL images. Fourth, IPOLπ is cheaper and less sensitive to imperfectly collimated light than IPOL. Altogether, the high spatial, angular, and temporal resolutions of IPOLπ enable a deeper insight into ocular biomechanics and eye physiology and pathology.

10.
Glia ; 71(4): 1057-1080, 2023 04.
Article in English | MEDLINE | ID: mdl-36573349

ABSTRACT

Chronic kidney disease (CKD)-associated mental disorders have been attributed to the excessive accumulation of hemodialysis-resistant indoxyl-3-sulfate (I3S) in the brain. I3S not only induces oxidative stress but is also a potent endogenous agonist of the aryl hydrocarbon receptor (AhR). Here, we investigated the role of AhR in CKD-induced brain disorders using a 5/6 nephrectomy-induced CKD mouse model, which showed increased I3S concentration in both blood and brain, anxiety and impaired novelty recognition, and AhR activation in the anterior cortex. GFAP+ reactive astrocytes were increased accompanied with the reduction of glutamate transporter 1 (GLT1) on perineuronal astrocytic processes (PAPs) in the anterior cingulate cortex (ACC) in CKD mice, and these alterations were attenuated in both neural lineage-specific and astrocyte-specific Ahr conditional knockout mice (nAhrCKO and aAhrCKO). By using chronic I3S treatment in primary astrocytes and glia-neuron (GN) mix cultures to mimic the CKD brain microenvironment, we also found significant reduction of GLT1 expression and activity in an AhR-dependent manner. Chronic I3S treatment induced AhR-dependent pro-oxidant Nox1 and AhR-independent anti-oxidant HO-1 expressions. Notably, AhR mediates chronic I3S-induced neuronal activity enhancement and synaptotoxicity in GN mix, not neuron-enriched cortical culture. In CKD mice, neuronal activity enhancement was observed in ACC and hippocampal CA1, and these responses were abrogated by both nAhrCKO and aAhrCKO. Finally, intranasal AhR antagonist CH-223191 administration significantly ameliorated the GLT1/PAPs reduction, increase in c-Fos+ neurons, and memory impairment in the CKD mice. Thus, astrocytic AhR plays a crucial role in the CKD-induced disturbance of neuron-astrocyte interaction and mental disorders.


Subject(s)
Mental Disorders , Receptors, Aryl Hydrocarbon , Renal Insufficiency, Chronic , Animals , Mice , Astrocytes/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Hippocampus/metabolism , Indican/metabolism , Mental Disorders/etiology , Mental Disorders/metabolism , Mice, Knockout , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism
11.
J Biomech Eng ; 145(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36459150

ABSTRACT

Stretch-induced collagen uncrimping underlies the nonlinear mechanical behavior of the sclera according to what is often called the process of recruitment. We recently reported experimental measurements of sclera collagen crimp and pressure-induced uncrimping. Our studies, however, were cross-sectional, providing statistical descriptions of crimp with no information on the effects of stretch on specific collagen bundles. Data on bundle-specific uncrimping is necessary to better understand the effects of macroscale input on the collagen microscale and tissue failure. Our goal in this project was to measure bundle-specific stretch-induced collagen uncrimping of sclera. Three goat eyes were cryosectioned sagittally (30 µm). Samples of equatorial sclera were isolated, mounted to a custom uni-axial stretcher and imaged with polarized light microscopy at various levels of clamp-to-clamp stretch until failure. At each stretch level, local strain was measured using image tracking techniques. The level of collagen crimping was determined from the bundle waviness, defined as the circular standard deviation of fiber orientation along a bundle. Eye-specific recruitment curves were then computed using eye-specific waviness at maximum stretch before sample failure to define fibers as recruited. Nonlinear mixed effect models were used to determine the associations of waviness to local strain and recruitment to clamp-to-clamp stretch. Waviness decreased exponentially with local strain (p < 0.001), whereas bundle recruitment followed a sigmoidal curve with clamp-to-clamp stretch (p < 0.001). Individual bundle responses to stretch varied substantially, but recruitment curves were similar across sections and eyes. In conclusion, uni-axial stretch caused measurable bundle-specific uncrimping, with the sigmoidal recruitment pattern characteristic of fiber-reinforced soft tissues.


Subject(s)
Collagen , Sclera , Animals , Microscopy, Polarization , Goats , Biomechanical Phenomena
12.
Blood Cancer Discov ; 3(6): 516-535, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35960210

ABSTRACT

Despite the expanding portfolio of targeted therapies for adults with acute myeloid leukemia (AML), direct implementation in children is challenging due to inherent differences in underlying genetics. Here we established the pharmacologic profile of pediatric AML by screening myeloblast sensitivity to approved and investigational agents, revealing candidates of immediate clinical relevance. Drug responses ex vivo correlated with patient characteristics, exhibited age-specific alterations, and concorded with activities in xenograft models. Integration with genomic data uncovered new gene-drug associations, suggesting actionable therapeutic vulnerabilities. Transcriptome profiling further identified gene-expression signatures associated with on- and off-target drug responses. We also demonstrated the feasibility of drug screening-guided treatment for children with high-risk AML, with two evaluable cases achieving remission. Collectively, this study offers a high-dimensional gene-drug clinical data set that could be leveraged to research the unique biology of pediatric AML and sets the stage for realizing functional precision medicine for the clinical management of the disease. SIGNIFICANCE: We conducted integrated drug and genomic profiling of patient biopsies to build the functional genomic landscape of pediatric AML. Age-specific differences in drug response and new gene-drug interactions were identified. The feasibility of functional precision medicine-guided management of children with high-risk AML was successfully demonstrated in two evaluable clinical cases. This article is highlighted in the In This Issue feature, p. 476.


Subject(s)
Leukemia, Myeloid, Acute , Precision Medicine , Child , Adult , Humans , Precision Medicine/methods , Pharmacogenetics , Leukemia, Myeloid, Acute/drug therapy , Gene Expression Profiling/methods , Transcriptome
13.
Exp Eye Res ; 220: 109105, 2022 07.
Article in English | MEDLINE | ID: mdl-35568202

ABSTRACT

Our goal was to identify the factors with the strongest influence on the minimum lamina cribrosa (LC) oxygen concentration as potentially indicative of conditions increasing hypoxia risk. Because direct measurement of LC hemodynamics and oxygenation is not yet possible, we developed 3D eye-specific LC vasculature models. The vasculature of a normal monkey eye was perfusion-labeled post-mortem. Serial cryosections through the optic nerve head were imaged using fluorescence and polarized light microscopy to visualize the vasculature and collagen, respectively. The vasculature within a 450 µm-thick region containing the LC - identified from the collagen, was segmented, skeletonized, and meshed for simulations. Using Monte Carlo sampling, 200 vascular network models were generated with varying vessel diameter, neural tissue oxygen consumption rate, inflow hematocrit, and blood pressures (arteriole, venule, anterior boundary, and posterior boundary). Factors were varied over ranges of baseline ±20% with uniform probability. For each model we first obtained the blood flow, and from this the neural tissue oxygen concentration. ANOVA was used to identify the factors with the strongest influence on the minimum (10th percentile) oxygen concentration in the LC. The three most influential factors were, in ranked order, vessel diameter, neural tissue oxygen consumption rate, and arteriole pressure. There was a strong interaction between vessel diameter and arteriole pressure whereby the impact of one factor was larger when the other factor was small. Our results show that, for the eye analyzed, conditions that reduce vessel diameter, such as vessel compression due to elevated intraocular pressure or gaze-induced tissue deformation, may particularly contribute to decreased LC oxygen concentration. More eyes must be analyzed before generalizing.


Subject(s)
Intraocular Pressure , Optic Disk , Collagen , Optic Disk/physiology , Oxygen , Sclera/physiology
14.
J Biomech Eng ; 144(6)2022 06 01.
Article in English | MEDLINE | ID: mdl-35266993

ABSTRACT

A comprehensive characterization of the three-dimensional (3D) vascular network of the optic nerve head (ONH) is critical to understanding eye physiology and pathology. Current in vivo imaging technologies, however, do not have simultaneous high spatial resolution and imaging depth to resolve the small vessels deep within the ONH. We describe a workflow for the 3D reconstruction and quantitative morphological analysis of the ONH vasculature. The vessels of a normal monkey ONH were perfusion labeled. Serial cryosections of the ONH were imaged using fluorescence microscopy (FM) and instant polarized light microscopy (IPOL) to visualize the labeled vessels and label-free collagen, respectively. The IPOL images were registered and used to form a stack of FM images from which the vessels were segmented and skeletonized to reconstruct the 3D vascular network. The network consisted of 12,966 vessel segments, 7989 branching points, and 1100 terminal points at the boundaries. For each vessel segment, we measured its length, tortuosity, inclination (θ), and polar orientation (φ). The length followed a lognormal distribution, whereas the distribution of the tortuosity followed an exponential decay. The vessels were mainly oriented toward the coronal plane (θ = 90 deg). For orientation, there were nearly as many vessels aligned circumferentially (φ = 90 deg) and radially (φ = 0 deg). Our results demonstrate the workflow for 3D eye-specific reconstruction and quantification of the monkey ONH vascular network. This is a critical first step to analyze the blood flow and oxygenation within the ONH, which will help understand the role of vascular dysfunction in glaucoma.


Subject(s)
Glaucoma , Optic Disk , Animals , Glaucoma/pathology , Haplorhini , Imaging, Three-Dimensional , Intraocular Pressure , Optic Disk/diagnostic imaging , Optic Disk/pathology , Workflow
15.
Exp Eye Res ; 217: 108967, 2022 04.
Article in English | MEDLINE | ID: mdl-35114213

ABSTRACT

Current tools lack the temporal or spatial resolution necessary to image many important aspects of the architecture and dynamics of the optic nerve head (ONH). We evaluated the potential of instant polarized light microscopy (IPOL) to overcome these limitations by leveraging the ability to capture collagen fiber orientation and density in a single image. Coronal sections through the ONH of fresh normal sheep eyes were imaged using IPOL while they were stretched using custom uniaxial or biaxial micro-stretch devices. IPOL allows identifying ONH collagen architectural details, such as fiber interweaving and crimp, and has high temporal resolution, limited only by the frame rate of the camera. Local collagen fiber orientations and deformations were quantified using color analysis and image tracking techniques. We quantified stretch-induced collagen uncrimping of lamina cribrosa (LC) and peripapillary sclera (PPS), and changes in LC pore size (area) and shape (convexity and aspect ratio). The simultaneous high spatial and temporal resolutions of IPOL revealed complex ONH biomechanics: i) stretch-induced local deformation of the PPS was nonlinear and nonaffine. ii) under load the crimped collagen fibers in the PPS and LC straightened, without torsion and with only small rotations. iii) stretch-induced LC pore deformation was anisotropic and heterogeneous among pores. Overall, with stretch the pores were became larger, more convex, and more circular. We have demonstrated that IPOL reveals details of collagen morphology and mechanics under dynamic loading previously out of reach. IPOL can detect stretch-induced collagen uncrimping and other elements of the tissue nonlinear mechanical behavior. IPOL showed changes in pore morphology and collagen architecture that will help improve understanding of how LC tissue responds to load.


Subject(s)
Optic Disk , Animals , Biomechanical Phenomena , Collagen/chemistry , Microscopy, Polarization/methods , Optic Disk/physiology , Sclera/physiology , Sheep
16.
Exp Eye Res ; 215: 108916, 2022 02.
Article in English | MEDLINE | ID: mdl-34973204

ABSTRACT

Our goal was to analyze the spatial interrelation between vascular and collagen networks in the lamina cribrosa (LC). Specifically, we quantified the percentages of collagen beams with/without vessels and of vessels inside/outside of collagen beams. To do this, the vasculature of six normal monkey eyes was labeled by perfusion post-mortem. After enucleation, coronal cryosections through the LC were imaged using fluorescence and polarized light microscopy to visualize the blood vessels and collagen beams, respectively. The images were registered to form 3D volumes. Beams and vessels were segmented, and their spatial interrelationship was quantified in 3D. We found that 22% of the beams contained a vessel (range 14%-32%), and 21% of vessels were outside beams (13%-36%). Stated differently, 78% of beams did not contain a vessel (68%-86%), and 79% of vessels were inside a beam (64%-87%). Individual monkeys differed significantly in the fraction of vessels outside beams (p < 0.01 by linear mixed effect analysis), but not in the fraction of beams with vessels (p > 0.05). There were no significant differences between contralateral eyes in the percent of beams with vessels and of vessels outside beams (p > 0.05). Our results show that the vascular and collagenous networks of the LC in monkey are clearly distinct, and the historical notions that each LC beam contains a vessel and all vessels are within beams are inaccurate. We postulate that vessels outside beams may be relatively more vulnerable to mechanical compression by elevated IOP than are vessels shielded inside of beams.


Subject(s)
Glaucoma , Collagen , Extracellular Matrix , Humans , Intraocular Pressure , Microscopy, Polarization , Stress, Mechanical
17.
J Biophotonics ; 14(2): e202000326, 2021 02.
Article in English | MEDLINE | ID: mdl-33103363

ABSTRACT

Collagen fibers are a primary load-bearing component of connective tissues and are therefore central to tissue biomechanics and pathophysiology. Understanding collagen architecture and behavior under dynamic loading requires a quantitative imaging technique with simultaneously high spatial and temporal resolutions. Suitable techniques are thus rare and often inaccessible. In this study, we present instant polarized light microscopy (IPOL), in which a single snapshot image encodes information on fiber orientation and retardance, thus fulfilling the requirement. We utilized both simulation and experimental data from collagenous tissues of chicken tendon, sheep eye, and porcine heart to evaluate the effectiveness of IPOL as a quantitative imaging technique. We demonstrate that IPOL allows quantitative characterization of micron-scale collagen fiber architecture at full camera frame rates (156 frames/second herein).


Subject(s)
Collagen , Tendons , Animals , Biomechanical Phenomena , Diagnostic Imaging , Microscopy, Polarization , Sheep , Swine , Tendons/diagnostic imaging
18.
Front Immunol ; 11: 561758, 2020.
Article in English | MEDLINE | ID: mdl-33117346

ABSTRACT

Enterovirus A71 (EV-A71), the pathogen responsible for the seasonal hand-foot-and-mouth epidemics, can cause significant mortality in infants and young children. The vaccine against EV-A71 could potentially prevent virus-induced neurological complications and mortalities occurring due to the high risk of poliomyelitis-like paralysis and fatal encephalitis. It is known that polysaccharide purified from Ganoderma lucidum (PS-G) can effectively modulate immune function. Here, we used PS-G as an adjuvant with the EV-A71 mucosal vaccine and studied its effects. Our data showed that PS-G-adjuvanted EV-A71 generated significantly better IgA and IgG in the serum, saliva, nasal wash, bronchoalveolar lavage fluid (BALF), and feces. More importantly, these antibodies could neutralize the infectivity of EV-A71 (C2 genotype) and cross-neutralize the B4, B5, and C4 genotypes of EV-A71. In addition, more EV-A71-specific IgA- and IgG- secreting cells were observed with the used of a combination of EV-A71 and PS-G. Furthermore, T-cell proliferative responses and IFN-γ and IL-17 secretions levels were notably increased in splenocytes when the EV-A71 vaccine contained PS-G. We also found that levels of IFN-γ and IL-17 released in Peyer's patch cells were significantly increased in EV-A71, after it was combined with PS-G. We further demonstrated that both CD4+ and CD8+ T cells were able to generate IFN-γ and IL-17 in the spleen. An easy-accessed model of hybrid hSCARB2+/+/stat-1-/- mice was used for EV-A71 infection and pathogenesis. We infected the mouse model with EV-A71, which was premixed with mouse sera immunized with the EV-A71 vaccine with or without PS-G. Indeed, in the EV-A71 + PS-G group, the levels of VP1-specific RNA sequences in the brain, spinal cord, and muscle decreased significantly. Finally, hSCARB2-Tg mice immunized via the intranasal route with the PS-G-adjuvanted EV-A71 vaccine resisted a subsequent lethal oral EV-A71 challenge. Taken together, these results demonstrated that PS-G could potentially be used as an adjuvant for the EV-A71 mucosal vaccine.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Administration, Intranasal/methods , Enterovirus A, Human/immunology , Enterovirus Infections/therapy , Fungal Polysaccharides/administration & dosage , Immunogenicity, Vaccine , Reishi/chemistry , Vaccination/methods , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Enterovirus Infections/virology , Female , Fruiting Bodies, Fungal/chemistry , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
Sci Rep ; 10(1): 4124, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139724

ABSTRACT

Cancer-related mortality of solid tumors remains the major cause of death worldwide. Circulating tumor DNA (ctDNA) released from cancer cells harbors specific somatic mutations. Sequencing ctDNA opens opportunities to non-invasive population screening and lays foundations for personalized therapy. In this study, two commercially available platforms, Roche's Avenio ctDNA Expanded panel and QIAgen's QIAseq Human Comprehensive Cancer  panel were compared for (1) panel coverage of clinically relevant variants; (2) target enrichment specificity and sequencing performance; (3) the sensitivity; (4) concordance and (5) sequencing coverage using the same human blood sample with ultra-deep next-generation sequencing. Our finding suggests that Avenio detected somatic mutations in common cancers in over 70% of patients while QIAseq covered nearly 90% with a higher average number of variants per patient (Avenio: 3; QIAseq: 8 variants per patient). Both panels demonstrated similar on-target rate and percentage of reads mapped. However, Avenio had more uniform sequencing coverage across regions with different GC content. Avenio had a higher sensitivity and concordance compared with QIAseq at the same sequencing depth. This study identifies a unique niche for the application of each of the panel and allows the scientific community to make an informed decision on the technologies to meet research or application needs.


Subject(s)
Circulating Tumor DNA/blood , DNA, Neoplasm/blood , Base Composition/genetics , Biomarkers, Tumor/blood , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation
20.
Methods ; 174: 11-19, 2020 03 01.
Article in English | MEDLINE | ID: mdl-30978505

ABSTRACT

Expansion microscopy was invented to surpass the optical diffraction limit by physically expanding biological specimens with swellable polymers. Due to the large sizes of expanded specimens, 3D imaging techniques that are capable to acquire large volumetric data rapidly at high spatial resolution are therefore required for expansion microscopy. Lattice light sheet microscopy (LLSM) was developed to image biological specimens rapidly at high 3D spatial resolution by using a thin lattice light sheet for sample illumination. However, due to the current limitations of LLSM mechanism and the optical design of LLS microscopes, it is challenging to image large expanded specimens at isotropic high spatial resolution using LLSM. To address the problem, we first optimized the sample preparation and expansion procedure for LLSM. Then, we implement a tiling lattice light sheet method to minimize sample translation during imaging and achieve much faster 3D imaging speed at high spatial resolution with more isotropic performance. Taken together, we report a general and improved 3D super-resolution imaging method for expanded samples.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Animals , Biopsy , Cells, Cultured , HeLa Cells , Humans , Image Processing, Computer-Assisted , Microtubules
SELECTION OF CITATIONS
SEARCH DETAIL
...