Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
NPJ Genom Med ; 5: 50, 2020.
Article in English | MEDLINE | ID: mdl-33240524

ABSTRACT

We have identified six patients harbouring distinct germline BAP1 mutations. In this study, we functionally characterise known BAP1 pathogenic and likely benign germline variants out of these six patients to aid in the evaluation and classification of unknown BAP1 germline variants. We found that pathogenic germline variants tend to encode truncated proteins, show diminished expression of epithelial-mesenchymal transition (EMT) markers, are localised in the cytosol and have reduced deubiquitinase capabilities. We show that these functional assays are useful for BAP1 variant curation and may be added in the American College of Medical Genetics and Genomics (ACMG) criteria for BAP1 variant classification. This will allow clinicians to distinguish between BAP1 pathogenic and likely benign variants reliably and may aid to quickly benchmark newly identified BAP1 germline variants. Classification of novel BAP1 germline variants allows clinicians to inform predisposed patients and relevant family members regarding potential cancer risks, with appropriate clinical interventions implemented if required.

2.
J Clin Invest ; 130(6): 3005-3020, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32364535

ABSTRACT

Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA-binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1.


Subject(s)
Epigenomics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Stomach Neoplasms/metabolism , Telomerase/biosynthesis , Trans-Activators/metabolism , Cell Line, Tumor , Humans , Mutation , Neoplasm Proteins/genetics , Response Elements , Stomach Neoplasms/genetics , Telomerase/genetics , Trans-Activators/genetics
3.
SLAS Discov ; 24(5): 606-612, 2019 06.
Article in English | MEDLINE | ID: mdl-30744467

ABSTRACT

Thermal shift assay (TSA) is an increasingly popular technique used for identifying protein stabilizing conditions or interacting ligands in X-ray crystallography and drug discovery applications. Although the setting up and running of TSA reactions is a relatively simple process, the subsequent analysis of TSA data, especially in high-throughput format, requires substantial amount of effort if conducted manually. We therefore developed the Thermal Shift Assay-Curve Rapid and Automatic Fitting Tool (TSA-CRAFT), a freely available software that enable automatic analysis of TSA data of any throughput. TSA-CRAFT directly reads real-time PCR instrument data files and displays the analyzed results in a web browser. This software features streamlined data processing and Boltzmann equation fitting, which is demonstrated in this study to provide more accurate data analysis than the commonly used first-derivative method. TSA-CRAFT is freely available as a cross-operating system-compatible standalone tool ( https://sourceforge.net/projects/tsa-craft/ ) and also as a freely accessible web server ( http://tbtlab.org/tsacraft.html ).


Subject(s)
Biological Assay/methods , Drug Discovery , Software , Data Analysis , Ligands , Web Browser
4.
Front Physiol ; 8: 887, 2017.
Article in English | MEDLINE | ID: mdl-29163222

ABSTRACT

The membrane of the endoplasmic reticulum (ER) of nucleated human cells harbors the protein translocon, which facilitates membrane integration or translocation of almost every newly synthesized polypeptide targeted to organelles of the endo- and exocytotic pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins and complexes that are permanently or transiently associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, modification of precursor polypeptides in transit through the Sec61 complex, and Sec61 channel gating, i.e., dynamic regulation of the pore forming subunit to mediate precursor transport and calcium efflux. Recently, cryoelectron tomography of translocons in native ER membrane vesicles, derived from human cell lines or patient fibroblasts, and even intact cells has given unprecedented insights into the architecture and dynamics of the native translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion, and translocation of newly synthesized polypeptides as well as the putative physiological roles of the Sec61 channel as a passive ER calcium leak channel. Furthermore, the structural insights into the Sec61 channel are incorporated into an overview and update on Sec61 channel-related diseases-the Sec61 channelopathies-and novel therapeutic concepts for their treatment.

5.
Nat Commun ; 6: 6899, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25896806

ABSTRACT

Cellular homeostasis relies upon precise regulation of Ca(2+) concentration. Stromal interaction molecule (STIM) proteins regulate store-operated calcium entry (SOCE) by sensing Ca(2+) concentration in the ER and forming oligomers to trigger Ca(2+) entry through plasma membrane-localized Orai1 channels. Here we characterize a STIM2 splice variant, STIM2.1, which retains an additional exon within the region encoding the channel-activating domain. Expression of STIM2.1 is ubiquitous but its abundance relative to the more common STIM2.2 variant is dependent upon cell type and highest in naive T cells. STIM2.1 knockdown increases SOCE in naive CD4(+) T cells, whereas knockdown of STIM2.2 decreases SOCE. Conversely, overexpression of STIM2.1, but not STIM2.2, decreases SOCE, indicating its inhibitory role. STIM2.1 interaction with Orai1 is impaired and prevents Orai1 activation, but STIM2.1 shows increased affinity towards calmodulin. Our results imply STIM2.1 as an additional player tuning Orai1 activation in vivo.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Cell Adhesion Molecules/metabolism , Gene Expression Regulation/physiology , Protein Isoforms/metabolism , Biological Transport/physiology , Calcium Channels/genetics , Calmodulin/metabolism , Cell Adhesion Molecules/genetics , HEK293 Cells , Humans , Jurkat Cells , ORAI1 Protein , Protein Isoforms/genetics , Stromal Interaction Molecule 2
6.
J Mol Biol ; 427(6 Pt A): 1159-75, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-24968227

ABSTRACT

Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various transport components in cytosol plus ER and can occur either cotranslationally or posttranslationally. The two mechanisms merge at the heterotrimeric Sec61 complex in the ER membrane, which forms an aqueous polypeptide-conducting channel. Since the mammalian ER is also the main intracellular calcium storage organelle, the Sec61 complex is tightly regulated in its dynamics between the open and closed conformations by various ligands, such as precursor polypeptides at the cytosolic face and the Hsp70-type molecular chaperone BiP at the ER lumenal face (Hsp, heat shock protein). Furthermore, BiP binding to the incoming precursor polypeptide contributes to unidirectionality and efficiency of transport. Recent insights into the structural dynamics of the Sec61 complex and related complexes in eubacteria and archaea have various mechanistic and functional implications.


Subject(s)
Endoplasmic Reticulum/metabolism , Amino Acid Sequence , Animals , Cytosol/metabolism , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Protein Processing, Post-Translational , Protein Transport , SEC Translocation Channels , Sequence Homology, Amino Acid
7.
Proteins ; 82(7): 1503-11, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24464816

ABSTRACT

Transmembrane proteins such as transporters and channels mediate the passage of inorganic and organic substances across biological membranes through their central pore. Pore-lining residues (PLRs) that make direct contacts to the substrates have a crucial impact on the function of the protein and, hence, their identification is a key step in mechanistic studies. Here, we established a nonredundant data set containing the three-dimensional (3D) structures of 90 α-helical transmembrane proteins and annotated the PLRs of these proteins by a pore identification software. A support vector machine was then trained to distinguish PLRs from other residues based on the protein sequence alone. Using sixfold cross-validation, our best performing predictor gave a Matthews's correlation coefficient of 0.41 with an accuracy of 0.86, sensitivity of 0.61, and specificity of 0.89, respectively. We provide a novel software tool that will aid biomedical scientists working on transmembrane proteins with unknown 3D structures. Both standalone version and web service are freely available from the URL http://service.bioinformatik.uni-saarland.de/PRIMSIPLR/.


Subject(s)
Amino Acid Sequence , Computational Biology/methods , Membrane Proteins/chemistry , Protein Structure, Secondary , Software , Databases, Protein , Reproducibility of Results , Support Vector Machine
8.
Proteins ; 81(4): 555-67, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23161741

ABSTRACT

Using molecular docking, we identified a cholesterol-binding site in the groove between transmembrane helices 1 and 7 near the inner membrane-water interface of the G protein-coupled receptor CXCR4, a coreceptor for HIV entry into cells. In this docking pose, the amino group of lysine K67 establishes a hydrogen bond with the hydroxyl group of cholesterol, whereas tyrosine Y302 stacks with cholesterol by its aromatic side chain, and a number of residues form hydrophobic contacts with cholesterol. Sequence alignment showed that a similar putative cholesterol-binding site is also present in CCR5, another HIV coreceptor. We suggest that the interaction of cholesterol with these putative cholesterol-binding sites in CXCR4 and CCR5 is responsible for the presence of these receptors in lipid rafts, for the effect of cholesterol on their conformational stability and function, and for the role that cell cholesterol plays in the cell entry of HIV strains that use these membrane proteins as coreceptors. We propose that mutations of residues that are involved in cholesterol binding will make CXCR4 and CCR5 insensitive to membrane cholesterol content. Cholesterol-binding sites in HIV coreceptors are potential targets for steroid drugs that bind to CXCR4 and CCR5 with higher binding affinity than cholesterol, but do not stabilize the native conformation of these proteins.


Subject(s)
Cholesterol/metabolism , HIV Infections/metabolism , HIV-1/physiology , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Receptors, HIV/metabolism , Amino Acid Sequence , Binding Sites , HIV Infections/virology , Humans , Molecular Docking Simulation , Receptors, CCR5/chemistry , Receptors, CXCR4/chemistry , Sequence Alignment , Virus Internalization
9.
J Chem Phys ; 137(14): 145105, 2012 Oct 14.
Article in English | MEDLINE | ID: mdl-23061869

ABSTRACT

A crucial process in biological cells is the translocation of newly synthesized proteins across cell membranes via integral membrane protein pores termed translocons. Recent improved techniques now allow producing artificial membranes with pores of similar dimensions of a few nm as the translocon system. For the translocon system, the protein has to be unfolded, whereas the artificial pores are wide enough so that small proteins can pass through even when folded. To study how proteins permeate through such membrane pores, we used coarse-grained Brownian dynamics simulations where the proteins were modeled as single beads or bead-spring polymers for both folded and unfolded states. The pores were modeled as cylindrical holes through the membrane with various radii and lengths. Diffusion was driven by a concentration gradient created across the porous membrane. Our results for both folded and unfolded configurations show the expected reciprocal relation between the flow rate and the pore length in agreement with an analytical solution derived by Brunn et al. [Q. J. Mech. Appl. Math. 37, 311 (1984)]. Furthermore, we find that the geometric constriction by the narrow pore leads to an accumulation of proteins at the pore entrance, which in turn compensates for the reduced diffusivity of the proteins inside the pore.


Subject(s)
Models, Molecular , Nanopores , Proteins/metabolism , Cell Membrane/metabolism , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Protein Folding , Protein Transport , Proteins/chemistry
10.
Proteins ; 80(2): 421-32, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22095919

ABSTRACT

Proteins containing concavities such as pockets, cavities, and tunnels or pores perform important functions in ligand-induced signal transduction, enzymatic catalysis, and in facilitating the permeation of small molecules through membranes. Computational algorithms for identifying such shapes are therefore of great use for studying the mechanisms of these reactions. We developed the novel toolkit PROPORES for pore identification and applied our program to the systems aquaporin, tryptophan synthase, leucine transporter, and acetylcholinesterase. As a novel feature, the program checks whether access to occluded ligand binding pockets or blocked channels can be achieved by systematically rotating side chains of the gating residues. In this way, we obtain a more flexible view of the putative structural adaptability of protein structures. For the four systems mentioned, the new method was able to identify connections between pores that are separated in the X-ray structures or to connect internal pores with the protein surrounding. The software is available from http://gepard.bioinformatik.uni-saarland.de/software/propores/.


Subject(s)
Models, Molecular , Proteins/chemistry , Software , Acetylcholinesterase/chemistry , Algorithms , Animals , Aquaporins/chemistry , Databases, Protein , Protein Conformation , Torpedo/metabolism , Tryptophan Synthase/chemistry
11.
Nucleic Acids Res ; 37(Web Server issue): W559-64, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19433508

ABSTRACT

Many proteins use a long channel to guide the substrate or ligand molecules into the well-defined active sites for catalytic reactions or for switching molecular states. In addition, substrates of membrane transporters can migrate to another side of cellular compartment by means of certain selective mechanisms. SLITHER (http://bioinfo.mc.ntu.edu.tw/slither/or http://slither.rcas.sinica.edu.tw/) is a web server that can generate contiguous conformations of a molecule along a curved tunnel inside a protein, and the binding free energy profile along the predicted channel pathway. SLITHER adopts an iterative docking scheme, which combines with a puddle-skimming procedure, i.e. repeatedly elevating the potential energies of the identified global minima, thereby determines the contiguous binding modes of substrates inside the protein. In contrast to some programs that are widely used to determine the geometric dimensions in the ion channels, SLITHER can be applied to predict whether a substrate molecule can crawl through an inner channel or a half-channel of proteins across surmountable energy barriers. Besides, SLITHER also provides the list of the pore-facing residues, which can be directly compared with many genetic diseases. Finally, the adjacent binding poses determined by SLITHER can also be used for fragment-based drug design.


Subject(s)
Catalytic Domain , Membrane Transport Proteins/chemistry , Software , Glucose Transporter Type 1/chemistry , Humans , Internet , Ligands , Models, Molecular , Protein Conformation , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...