Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396963

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder with a prolonged prodromal phase. Higher urinary bis(monoacylglycerol)phosphate (BMP) levels associate with LRRK2 (leucine-rich repeat kinase 2) and GBA1 (glucocerebrosidase) mutations, and are considered as potential noninvasive biomarkers for predicting those mutations and PD progression. However, their reliability has been questioned, with inadequately investigated genetics, cohorts, and population. In this study, multiple statistical hypothesis tests were employed on urinary BMP levels and sequences of 90 PD-risk single nucleotide polymorphisms (SNPs) from Parkinson's Progression Markers Institution (PPMI) participants. Those SNPs were categorized into four groups based on their impact on BMP levels in various cohorts. Variants rs34637584 G/A and rs34637584 A/A (LRRK2 G2019S) were identified as the most relevant on increasing urinary BMP levels in the PD cohort. Meanwhile, rs76763715 T/T (GBA1) was the primary factor elevating BMP levels in the prodromal cohort compared to its T/C and C/C variants (N370S) and the PD cohort. Proteomics analysis indicated the changed transport pathways may be the reasons for elevated BMP levels in prodromal patients. Our findings demonstrated that higher urinary BMP levels alone were not reliable biomarkers for PD progression or gene mutations but might serve as supplementary indicators for early diagnosis and treatment.


Subject(s)
Lysophospholipids , Monoglycerides , Parkinson Disease , Humans , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Reproducibility of Results , Mutation , Biomarkers
2.
J Biol Chem ; 300(3): 105673, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272235

ABSTRACT

The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.


Subject(s)
Eukaryotic Initiation Factor-2 , Genes, Tumor Suppressor , Ubiquitin-Protein Ligases , Ubiquitination , Up-Regulation , Humans , A549 Cells , Cell Proliferation/genetics , Cyclic AMP/metabolism , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation , Transcription Factors/metabolism , Ubiquitination/genetics , Up-Regulation/genetics , Cell Movement/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Urol Oncol ; 38(5): 465-475, 2020 05.
Article in English | MEDLINE | ID: mdl-32199754

ABSTRACT

BACKGROUND: Urothelial carcinomas (UCs) are highly prevalent in patients with end-stage renal disease. Chronic kidney disease (CKD) is the predecessor of end-stage renal disease, and it is also associated with UC. However, the interplay between CKD and UC lacks solid evidence. Acrolein is produced by polyamines and has been suggested to be the uremic "toxin." The level of acrolein correlates well with chronic renal failure. We recently found that acrolein-induced DNA damage and inhibited DNA repair in urothelial cells, which contribute to bladder cancer. Therefore, we hypothesize that acrolein is involved in the formation of UC in patients with CKD. MATERIALS AND METHODS: A total of 62 UC patients and 43 healthy control subjects were recruited. Acrolein-DNA (Acr-dG) adducts and p53 gene mutations in UC tissues, plasma acrolein-protein conjugates (Acr-PC) and S-(3-hydroxypropyl)-N-acetylcysteine levels, and urinary Acr metabolites were analyzed in these patients. RESULTS: Acr-dG levels were statistically correlated with CKD stages in UC patients (P < 0.01). Most p53 mutations were G to A and G to T mutations in these patients, and 50% of mutations at G:C pairs occurred in CpG sites, which is similar to the mutational spectra induced by Acr-dG adducts. Acr-PC levels in the plasma of UC patients with CKD were significantly higher than those of control subjects (P < 0.001). Altered urinary S-(3-hydroxypropyl)-N-acetylcysteine was also found in UC patients with CKD compared to control subjects (P < 0.005). CONCLUSION: These results indicate that acrolein acts as an endogenous uremic toxin and contributes to UC formation in patients with CKD.


Subject(s)
Acrolein/adverse effects , Carcinoma, Transitional Cell/genetics , DNA Damage , Genes, p53/drug effects , Genes, p53/genetics , Mutation , Renal Insufficiency, Chronic/complications , Urologic Neoplasms/genetics , Aged , Female , Humans , Male , Middle Aged , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...