Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808728

ABSTRACT

T cell development proceeds via discrete stages that require both gene induction and gene repression. Transcription factors direct gene repression by associating with corepressor complexes containing chromatin-remodeling enzymes; the corepressors NCOR1 and NCOR2 recruit histone deacetylases to these complexes to silence transcription of target genes. Earlier work identified the importance of NCOR1 in promoting the survival of positively-selected thymocytes. Here, we used flow cytometry and single-cell RNA sequencing to identify a broader role for NCOR1 and NCOR2 in regulating thymocyte development. Using Cd4-cre mice, we found that conditional deletion of NCOR2 had no effect on thymocyte development, whereas conditional deletion of NCOR1 had a modest effect. In contrast, Cd4-cre x Ncor1f/f x Ncor2f/f mice exhibited a significant block in thymocyte development at the DP to SP transition. Combined NCOR1/2 deletion resulted in increased signaling through the T cell receptor, ultimately resulting in elevated BIM expression and increased negative selection. The NF-κB, NUR77, and MAPK signaling pathways were also upregulated in the absence of NCOR1/2, contributing to altered CD4/CD8 lineage commitment, TCR rearrangement, and thymocyte emigration. Taken together, our data identify multiple critical roles for the combined action of NCOR1 and NCOR2 over the course of thymocyte development.

2.
Nat Immunol ; 23(12): 1763-1776, 2022 12.
Article in English | MEDLINE | ID: mdl-36316474

ABSTRACT

The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway. These alterations resulted in aberrant Rag1 and Rag2 expression and accessibility. Whole-genome sequencing of Ncor1/2 DKO B cells identified increased number of structural variants with cryptic recombination signal sequences. Finally, deletion of Ncor1 alleles in mice facilitated leukemic transformation, whereas human leukemias with less NCOR1 correlated with worse survival. NCOR1/2 mutations in human leukemia correlated with increased RAG expression and number of structural variants. These studies illuminate how the corepressors NCOR1/2 regulate B cell differentiation and provide insights into how NCOR1/2 mutations may promote B cell transformation.


Subject(s)
Hematopoiesis , Signal Transduction , Mice , Humans , Animals , Co-Repressor Proteins , Cell Nucleus , Genomics , Nuclear Receptor Co-Repressor 2/genetics , Nuclear Receptor Co-Repressor 1/genetics
3.
Nat Commun ; 12(1): 6843, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824268

ABSTRACT

Integration of external signals and B-lymphoid transcription factor activities organise B cell lineage commitment through alternating cycles of proliferation and differentiation, producing a diverse repertoire of mature B cells. We use single-cell transcriptomics/proteomics to identify differentially expressed gene networks across B cell development and correlate these networks with subtypes of B cell leukemia. Here we show unique transcriptional signatures that refine the pre-B cell expansion stages into pre-BCR-dependent and pre-BCR-independent proliferative phases. These changes correlate with reciprocal changes in expression of the transcription factor EBF1 and the RNA binding protein YBX3, that are defining features of the pre-BCR-dependent stage. Using pseudotime analysis, we further characterize the expression kinetics of different biological modalities across B cell development, including transcription factors, cytokines, chemokines, and their associated receptors. Our findings demonstrate the underlying heterogeneity of developing B cells and characterise developmental nodes linked to B cell transformation.


Subject(s)
B-Lymphocytes/cytology , Gene Regulatory Networks , Leukopoiesis/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Proliferation/genetics , Gene Expression Profiling , Gene Expression Regulation , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Prognosis , Proteomics , Single-Cell Analysis , Trans-Activators/genetics , Trans-Activators/metabolism
4.
Oncotarget ; 7(40): 65147-65156, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27556501

ABSTRACT

Mutations that activate RAS proto-oncogenes and their effectors are common in acute myeloid leukemia (AML); however, efforts to therapeutically target Ras or its effectors have been unsuccessful, and have been hampered by an incomplete understanding of which effectors are required for AML proliferation and survival. We investigated the role of Ras effector pathways in AML using murine and human AML models. Whereas genetic disruption of NRAS(V12) expression in an NRAS(V12) and Mll-AF9-driven murine AML induced apoptosis of leukemic cells, inhibition of phosphatidylinositol-3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) signaling did not reproduce this effect. Conversely, genetic disruption of RALB signaling induced AML cell death and phenocopied the effects of suppressing oncogenic Ras directly - uncovering a novel role for RALB signaling in AML survival. Knockdown of RALB led to decreased phosphorylation of TBK1 and reduced BCL2 expression, providing mechanistic insight into RALB survival signaling in AML. Notably, we found that patient-derived AML blasts have higher levels of RALB-TBK1 signaling compared to normal blood leukocytes, supporting a pathophysiologic role for RALB signaling for AML patients. Overall, our work provides new insight into the specific roles of Ras effector pathways in AML and has identified RALB signaling as a key survival pathway.


Subject(s)
Gene Expression Regulation, Leukemic/physiology , Leukemia, Myeloid, Acute/metabolism , ral GTP-Binding Proteins/metabolism , ras Proteins/metabolism , Animals , Heterografts , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, SCID , Signal Transduction/physiology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...