Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 10(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34574309

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and mutagenic compounds that are often formed during the thermal processing of herbal medicine ingredients. In this study, the concentrations of four PAHs (PAH4) in various herbal medicine ingredients were monitored. Further, the QuEChERS method was used to replace conventional pretreatment, a more complex and cumbersome approach. The recovery range of the QuEChERS method ranged between 89.65-118.59%, and the average detection levels of benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF), and Benzo[a]pyrene (BaP) in 50 herbal medicine ingredients were 0.18, 0.27, 1.13, and 0.17 µg/kg, respectively. The BaP and PAH4 levels in all tested samples were deemed safe according to risk characterization analyses based on European Union and Korean guidelines. Therefore, our findings indicated that the QuEChERS method could be used as an effective alternative to conventional sample pretreatment for the analysis of herbal medicine ingredients.

2.
J Nanosci Nanotechnol ; 19(6): 3252-3262, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30744751

ABSTRACT

Various Ni catalysts supported on γ-Al2O3 were prepared by a wet impregnation (WI) method and deposition-precipitation (DP) method with different precipitants and applied to CO and CO2 methanation. The prepared catalysts were characterized by various techniques including nitrogen physisorption, X-ray diffraction (XRD), temperature-programmed reduction with H2 (H2-TPR), H2 chemisorption, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Irrespective of kinds of precipitant, the Ni/γ-Al2O3 catalysts prepared with a DP method showed a remarkable enhanced catalytic performance in CO and CO2 methanation compared with the Ni/γ-Al2O3 catalyst prepared with a WI method owing to the higher catalytic active surface area (CASA). In the case of Ni/γ-Al2O3 catalysts prepared with a DP method, the high calcination temperatures are not favorable for the high catalytic activity due to the decreased reduction degree of Ni oxide species and CASA. The reduction degree of Ni oxide species can be increased with reduction temperature. However, the higher reduction temperature above 500 °C is not desirable to achieve the high catalytic activity because of the decreased CASA. The selective CO methanation was also accomplished at lower temperatures over the Ni/γ-Al2O3 catalyst prepared with a DP method than over the Ni/γ-Al2O3 catalyst prepared with a WI method.

SELECTION OF CITATIONS
SEARCH DETAIL
...