Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Vision Res ; 202: 108154, 2023 01.
Article in English | MEDLINE | ID: mdl-36436365

ABSTRACT

Parasol-magnocellular pathway ganglion cells form an important output stream of the primate retina and make a major contribution to visual motion detection. They are known to comprise ON and OFF type response polarities but the relative numbers of ON and OFF parasol cells, and the overall contribution of parasol cells to high-acuity foveal vision are not well understood. Here we use antibodies against carbonic anhydrase 8 (CA8) and intracellular injections of the liphilic dye DiI to show that CA8 selectively labels OFF parasol cells in macaque retina. By combined labeling with CA8 antibodies and a previously-described marker for parasol cells (GABAA receptor antibodies), we show that ON and OFF parasol cells each comprise âˆ¼ 6% of all ganglion cells in central retina (each peak density âˆ¼ 3000 cells/mm2 at 5 deg.), and each population comprises âˆ¼ 10% of all ganglion cells in peripheral temporal retina. Thus, the spatial density of parasol cells in central retina is greater than reported by previous anatomical studies, and the central-peripheral gradient in parasol cell density is shallower than previously reported. The data nevertheless predict decline in spatial acuity with visual field eccentricity for both midget-parvocellular pathway and parasol-magnocellular pathway mediated visual functions. The spatial resolving power of the OFF parasol array (peak âˆ¼ 7 cpd) falls short of macaque behavioral grating acuity by at least a factor of three throughout the retina.


Subject(s)
Macaca , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/physiology , Haplorhini , Retina/physiology , Visual Fields
2.
J Comp Neurol ; 530(9): 1470-1493, 2022 06.
Article in English | MEDLINE | ID: mdl-35029299

ABSTRACT

Immunoreactivity for calcium-/calmodulin-dependent protein kinase II (CaMKII) in the primate dorsal lateral geniculate nucleus (dLGN) has been attributed to geniculocortical relay neurons and has also been suggested to arise from terminals of retinal ganglion cells. Here, we combined immunostaining with single-cell injections to investigate the expression of CaMKII in retinal ganglion cells of three primate species: macaque (Macaca fascicularis, M. nemestrina), human, and marmoset (Callithrix jacchus). We found that in all species, about 2%-10% of the total ganglion cell population expressed CaMKII. In all species, CaMKII was expressed by multiple types of wide-field ganglion cell including large sparse, giant sparse (melanopsin-expressing), broad thorny, and narrow thorny cells. Three other ganglion cells types, namely, inner and outer stratifying maze cells in macaque and tufted cells in marmoset were also found. Double labeling experiments showed that CaMKII-expressing cells included inner and outer stratifying melanopsin cells. Nearly all CaMKII-expressing ganglion cell types identified here are known to project to the koniocellular layers of the dLGN as well as to the superior colliculus. The best characterized koniocellular projecting cell type-the small bistratified (blue ON/yellow OFF) cell-was, however, not CaMKII-positive in any species. Our results indicate that the pattern of CaMKII expression in retinal ganglion cells is largely conserved across different species of primate suggesting a common functional role. But the results also show that CaMKII is not a marker for all koniocellular projecting retinal ganglion cells.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Retinal Ganglion Cells , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Callithrix , Geniculate Bodies , Humans , Macaca fascicularis/metabolism , Retina/metabolism , Retinal Ganglion Cells/physiology
3.
J Comp Neurol ; 530(6): 923-940, 2022 04.
Article in English | MEDLINE | ID: mdl-34622958

ABSTRACT

Recent advances in single-cell RNA sequencing have enabled the molecular distinction of ganglion cell populations in mammalian retinas. Here we used antibodies against the transcription factor special AT-rich binding protein 1 (Satb1, a protein which is expressed by on-off direction-selective ganglion cells in mouse retina) to study Satb1 expression in the retina of marmosets (Callithrix jacchus), macaques (Macaca fascicularis), and humans. In all species, Satb1 was exclusively expressed in retinal ganglion cells. The Satb1 cells made up ∼2% of the ganglion cell population in the central retina of all species, rising to a maximum ∼7% in peripheral marmoset retina. Intracellular injections in marmoset and macaque retinas revealed that most Satb1 expressing ganglion cells are widefield ganglion cells. In marmoset, Satb1 cells have a densely branching dendritic tree and include broad and narrow thorny, recursive bistratified, and parasol cells, all of which show some costratification with the outer or inner cholinergic amacrine cells. The recursive bistratified cells showed the strongest costratification but did not show extensive cofasciculation as reported for on-off direction-selective ganglion cells in rabbit and rodent retinas. In macaque, Satb1 was not expressed in recursive bistratified cells, but in large sparsely branching cells. Our findings further support the idea that the expression of transcription factors in retinal ganglion cells is not conserved across Old World (human and macaque) and New World (marmoset) primates and provides a further step to link a molecular marker with specific cell types.


Subject(s)
Matrix Attachment Region Binding Proteins/metabolism , Retinal Ganglion Cells/metabolism , Animals , Callithrix , Humans , Macaca fascicularis , Species Specificity
4.
Invest Ophthalmol Vis Sci ; 62(9): 22, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34259817

ABSTRACT

Purpose: The purpose of this study was to measure the composition of the inner nuclear layer (INL) in the central and peripheral human retina as foundation data for interpreting INL function and dysfunction. Methods: Six postmortem human donor retinas (male and female, aged 31-56 years) were sectioned along the temporal horizontal meridian. Sections were processed with immunofluorescent markers and imaged using high-resolution, multichannel fluorescence microscopy. The density of horizontal, bipolar, amacrine, and Müller cells was quantified between 1 and 12 mm eccentricity with appropriate adjustments for postreceptoral spatial displacements near the fovea. Results: Cone bipolar cells dominate the INL a with density near 50,000 cells/mm2 at 1 mm eccentricity and integrated total ∼10 million cells up to 10 mm eccentricity. Outside central retina the spatial density of all cell populations falls but the neuronal makeup of the INL remains relatively constant: a decrease in the proportion of cone bipolar cells (from 52% at 1 mm to 37% at 10 mm) is balanced by an increasing proportion of rod bipolar cells (from 9% to 15%). The proportion of Müller cells near the fovea (17%) is lower than in the peripheral retina (27%). Conclusions: Despite large changes in the absolute density of INL cell populations across the retina, their proportions remain relatively constant. These data may have relevance for interpreting diagnostic signals such as the electroretinogram and optical coherence tomogram.


Subject(s)
Fovea Centralis/cytology , Retinal Bipolar Cells/cytology , Adult , Cell Count , Female , Humans , Male , Microscopy, Fluorescence , Middle Aged , Tissue Donors
5.
Brain Struct Funct ; 226(9): 2745-2762, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34021395

ABSTRACT

We determined the retinal ganglion cell types projecting to the medial subdivision of inferior pulvinar (PIm) and the superior colliculus (SC) in the common marmoset monkey, Callithrix jacchus. Adult marmosets received a bidirectional tracer cocktail into the PIm (conjugated to Alexa fluor 488), and the SC (conjugated to Alexa fluor 594) using an MRI-guided approach. One SC injection included the pretectum. The large majority of retrogradely labelled cells were obtained from SC injections, with only a small proportion obtained after PIm injections. Retrogradely labelled cells were injected intracellularly in vitro using lipophilic dyes (DiI, DiO). The SC and PIm both received input from a variety of ganglion cell types. Input to the PIm was dominated by broad thorny (41%), narrow thorny (24%) and large bistratified (25%) ganglion cells. Input to the SC was dominated by parasol (37%), broad thorny (24%) and narrow thorny (17%) cells. Midget ganglion cells (which make up the large majority of primate retinal ganglion cells) and small bistratified (blue-ON/yellow OFF) cells were never observed to project to SC or PIm. Small numbers of other wide-field ganglion cell types were also encountered. Giant sparse (presumed melanopsin-expressing) cells were only seen following the tracer injection which included the pretectum. We note that despite the location of pulvinar complex in dorsal thalamus, and its increased size and functional importance in primate evolution, the retinal projections to pulvinar have more in common with SC projections than they do with projections to the dorsal lateral geniculate nucleus.


Subject(s)
Pulvinar , Retinal Ganglion Cells , Superior Colliculi , Animals , Callithrix , Geniculate Bodies , Retina , Visual Pathways
6.
J Comp Neurol ; 529(10): 2727-2749, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33527361

ABSTRACT

In primates, the retinal ganglion cells contributing to high acuity spatial vision (midget cells and parasol cells), and blue-yellow color vision (small bistratified cells) are well understood. Many other ganglion cell types with large dendritic fields (named wide-field ganglion cells) have been identified, but their spatial density and distribution are largely unknown. Here we took advantage of the recently established molecular diversity of ganglion cells to study wide-field ganglion cell populations in three primate species. We used antibodies against the transcription factor Special AT-rich binding protein 2 (Satb2) to explore its expression in macaque (Macaca fascicularis, M. nemestrina), human and marmoset (Callithrix jacchus) retinas. In all three species, Satb2 cells make up a low proportion (1.5-4%) of the ganglion cell population, with a slight increase from central to peripheral retina. Intracellular dye injections revealed that in macaque and human retinas, the large majority (over 80%) of Satb2 cells are inner and outer stratifying large sparse cells. By contrast, in marmoset retina the majority (over 60%) of Satb2 expressing cells were broad thorny cells, with smaller proportions of recursive bistratified (putative direction-selective), large bistratified, and outer stratifying narrow thorny cells. Our findings imply that Satb2 expression has undergone rapid species specific adaptations during primate evolution, because expression is not conserved across Old World (macaque, human) and New World (marmoset) suborders.


Subject(s)
Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Transcription Factors/analysis , Transcription Factors/biosynthesis , Animals , Callithrix , Female , Humans , Macaca , Male , Matrix Attachment Region Binding Proteins/analysis , Matrix Attachment Region Binding Proteins/biosynthesis , Species Specificity
7.
Vis Neurosci ; 36: E009, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31581958

ABSTRACT

In primate retina, the calcium-binding protein calbindin is expressed by a variety of neurons including cones, bipolar cells, and amacrine cells but it is not known which type(s) of cell express calbindin in the ganglion cell layer. The present study aimed to identify calbindin-positive cell type(s) in the amacrine and ganglion cell layer of human and marmoset retina using immunohistochemical markers for ganglion cells (RBPMS and melanopsin) and cholinergic amacrine (ChAT) cells. Intracellular injections following immunolabeling was used to reveal the morphology of calbindin-positive cells. In human retina, calbindin-labeled cells in the ganglion cell layer were identified as inner and outer stratifying melanopsin-expressing ganglion cells, and ON ChAT (starburst amacrine) cells. In marmoset, calbindin immunoreactivity in the ganglion cell layer was absent from ganglion cells but present in ON ChAT cells. In the inner nuclear layer of human retina, calbindin was found in melanopsin-expressing displaced ganglion cells and in at least two populations of amacrine cells including about a quarter of the OFF ChAT cells. In marmoset, a very low proportion of OFF ChAT cells was calbindin-positive. These results suggest that in both species there may be two types of OFF ChAT cells. Consistent with previous studies, the ratio of ON to OFF ChAT cells was about 70 to 30 in human and 30 to 70 in marmoset. Our results show that there are species-related differences between different primates with respect to the expression of calbindin.


Subject(s)
Amacrine Cells/metabolism , Calbindins/metabolism , Cholinergic Neurons/metabolism , Retinal Ganglion Cells/metabolism , Rod Opsins/metabolism , Adult , Animals , Callithrix/metabolism , Female , Humans , Immunohistochemistry , Injections, Intraocular , Male , Species Specificity
8.
Invest Ophthalmol Vis Sci ; 60(8): 2848-2859, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31260035

ABSTRACT

Purpose: The objective of this study was to map the distribution and density of the three major components of the classical scotopic "night vision" pathway (rods, rod bipolar, and AII amacrine cells) in postmortem human retinas. Methods: Four postmortem donor eyes (male and female, aged 44-56 years) were used to cut vertical sections through the temporal horizontal meridian. The sections were processed for immunohistochemistry and imaged using high-resolution multichannel confocal microscopy. Rods, rod bipolar, and AII amacrine cells were counted along the temporal horizontal meridian. Two additional retinas were used for intracellular injections. Results: Rod peak density is close to 150,000 cells/mm2 at 4 to 5 mm (15° to 20°) eccentricity, declining to below 70,000 cells/mm2 in peripheral retina. Rod bipolar density is lower but follows a similar distribution with peak density near 10,000 cells/mm2 between 2 and 4 mm (7° to 15°) eccentricity declining to below 4000 cells/mm2 in peripheral retina. The peak density of AII amacrine cells (near 4000 cells/mm2) is located close to the fovea, at 0.5- to 2 mm-eccentricity (2° to 7°) and declines to below 1000 cells/mm2 in the periphery. Thus, convergence between rods and AII cells increases from central to peripheral retina. Conclusions: Comparison with human psychophysics and ganglion cell density indicates that the spatial resolution of scotopic vision is limited by the AII mosaic at eccentricities below 15° and by the midget ganglion cell mosaic at eccentricities above 15°.


Subject(s)
Amacrine Cells/cytology , Retinal Bipolar Cells/cytology , Retinal Rod Photoreceptor Cells/cytology , Adult , Amacrine Cells/metabolism , Biomarkers/metabolism , Cell Count , Female , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Middle Aged , Night Vision/physiology , Retinal Bipolar Cells/metabolism , Retinal Neurons/cytology , Retinal Rod Photoreceptor Cells/metabolism
9.
Transl Vis Sci Technol ; 8(2): 7, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30941264

ABSTRACT

PURPOSE: Particle-mediated gene transfer has been used in animal models to study the morphology and connectivity of retinal ganglion cells. The aim of the present study was to apply this method to transfect ganglion cells in postmortem human retina. METHODS: Postmortem human eyes from male and female donors aged 40 to 76 years old were obtained within 15 hours after death. In addition, two marmoset retinas were obtained immediately after death. Ganglion cells were transfected with an expression plasmid for the postsynaptic density 95 protein conjugated to green or yellow fluorescent protein. Retinas were cultured for 3 days, fixed and then processed with immunohistochemical markers to reveal their stratification in the inner plexiform layer. RESULTS: The retinas maintained their morphology and immunohistochemical properties for at least 3 days in culture. Bipolar and ganglion cell morphology was comparable to that observed in noncultured tissue. The quality of transfected cells in human retina was similar to that in freshly enucleated marmoset eyes. Based on dendritic field size and stratification, at least 11 morphological types of retinal ganglion cell were distinguished. CONCLUSIONS: Particle-mediated gene transfer allows efficient targeting of retinal ganglion cells in cultured postmortem human retina. TRANSLATIONAL RELEVANCE: The translational value of this methodology lies in the provision of an in vitro platform to study structural and connectivity changes in human eye diseases that affect the integrity and organization of cells in the retina.

10.
J Comp Neurol ; 527(1): 312-327, 2019 01 01.
Article in English | MEDLINE | ID: mdl-28097654

ABSTRACT

Melanopsin-expressing retinal ganglion cells are intrinsically photosensitive cells that are involved in non-image forming visual processes such as the pupillary light reflex and circadian entrainment but also contribute to visual perception. Here we used immunohistochemistry to study the morphology, density, distribution, and synaptic connectivity of melanopsin-expressing ganglion cells in four post mortem human donor retinas. Two types of melanopsin-expressing ganglion cells were distinguished based on their dendritic stratification near either the outer or the inner border of the inner plexiform layer. Outer stratifying cells make up on average 60% of the melanopsin-expressing cells. About half of the melanopsin-expressing cells (or 80% of the outer stratifying cells) have their soma displaced to the inner nuclear layer. Inner stratifying cells have their soma exclusively in the ganglion cell layer and include a small proportion of bistratified cells. The dendritic field diameter of melanopsin-expressing cells ranges from 250 (near the fovea) to 1,000 µm in peripheral retina. The dendritic trees of outer stratifying cells cover the retina independent of soma location. The dendritic fields of both outer and inner stratifying cells show a high degree of overlap with a coverage factor of approximately two. Melanopsin-expressing cells occur at an average peak density of between ∼20 and ∼40 cells/mm2 at about 2 mm eccentricity, the density drops to below ∼10 cells/mm2 at about 8 mm eccentricity. Both the outer and inner stratifying dendrites express postsynaptic density (PSD95) immunoreactive puncta suggesting that they receive synaptic input from bipolar cells.


Subject(s)
Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Rod Opsins/metabolism , Adult , Female , Humans , Male , Middle Aged , Neural Pathways/cytology , Neural Pathways/metabolism
11.
J Comp Neurol ; 527(3): 558-576, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29292493

ABSTRACT

The primate visual brain possesses a myriad of pathways, whereby visual information originating at the retina is transmitted to multiple subcortical areas in parallel, before being relayed onto the visual cortex. The dominant retinogeniculostriate pathway has been an area of extensive study, and Vivien Casagrande's work in examining the once overlooked koniocellular pathway of the lateral geniculate nucleus has generated interest in how alternate subcortical pathways can contribute to visual perception. Another subcortical visual relay center is the inferior pulvinar (PI), which has four subdivisions and numerous connections with other subcortical and cortical areas and is directly recipient of retinal afferents. The complexity of subcortical connections associated with the PI subdivisions has led to differing results from various groups. A particular challenge in determining the exact connectivity pattern has been in accurately targeting the subdivisions of the PI with neural tracers. Therefore, in the present study, we used a magnetic resonance imaging (MRI)-guided stereotaxic injection system to inject bidirectional tracers in the separate subdivisions of the PI, the superior layers of the superior colliculus, the retina, and the lateral geniculate nucleus. Our results have determined for the first time that the medial inferior pulvinar (PIm) is innervated by widefield retinal ganglion cells (RGCs), and this pathway is not a collateral branch of the geniculate and collicular projecting RGCs. Furthermore, our tracing data shows no evidence of collicular terminations in the PIm, which are confined to the centromedial and posterior PI.


Subject(s)
Nerve Net/physiology , Pulvinar/physiology , Retina/physiology , Visual Pathways/physiology , Animals , Callithrix , Female , Geniculate Bodies/cytology , Geniculate Bodies/physiology , Male , Nerve Net/cytology , Primates , Pulvinar/cytology , Retinal Ganglion Cells/physiology , Superior Colliculi/cytology , Superior Colliculi/physiology , Visual Pathways/cytology
12.
J Comp Neurol ; 525(18): 3962-3974, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28875500

ABSTRACT

In primates, over 17 morphological types of retinal ganglion cell have been distinguished by their dendritic morphology and stratification, but reliable markers for specific ganglion cell populations are still rare. The calcium binding protein calretinin is known to be expressed in the inner nuclear and the ganglion cell layer of marmoset retina, however, the specific cell type(s) expressing calretinin in the ganglion cell layer are yet to be determined. Here, we identified calretinin positive retinal ganglion cells in the common marmoset Callithrix jacchus. Double labeling with the ganglion cell marker RBPMS demonstrated that the large majority (80%) of the calretinin positive cells in the ganglion cell layer are ganglion cells, and 20% are displaced amacrine cells. The calretinin positive ganglion cells made up on average 12% of the total ganglion cell population outside of the foveal region and their proportion increased with eccentricity. Prelabeling with antibodies against calretinin and subsequent intracellular injection with DiI revealed that the large majority of the injected cells (n = 74) were either narrow thorny or broad thorny ganglion cells, 14 cells were displaced amacrine cells. Narrow thorny cells were further distinguished into outer and inner stratifying cells. In addition, weakly labeled cells with a large soma were identified as parasol ganglion cells. Our results show that three types of thorny ganglion cells in marmoset retina can be identified with antibodies against calretinin. Our findings are also consistent with the idea that the proportion of wide-field ganglion cell types increases in peripheral retina.


Subject(s)
Calbindin 2/metabolism , Callithrix/anatomy & histology , Retina/cytology , Retinal Ganglion Cells/metabolism , Animals , Cell Count , Dendrites/metabolism , Female , Male , RNA-Binding Proteins/metabolism , Retinal Ganglion Cells/classification , Retinal Ganglion Cells/cytology
13.
Vis Neurosci ; 34: E002, 2017 01.
Article in English | MEDLINE | ID: mdl-28065198

ABSTRACT

Retinal bipolar cells spread their dendritic arbors to tile the retinal surface, extending them to the tips of the dendritic fields of their homotypic neighbors, minimizing dendritic overlap. Such uniform nonredundant dendritic coverage of these populations would suggest a degree of spatial order in the properties of their somal distributions, yet few studies have examined the patterning in retinal bipolar cell mosaics. The present study examined the organization of two types of cone bipolar cells in the mouse retina, the Type 2 cells and the Type 4 cells, and compared their spatial statistical properties with those of the horizontal cells and the cholinergic amacrine cells, as well as to random simulations of cells matched in density and constrained by soma size. The Delauney tessellation of each field was computed, from which nearest neighbor distances and Voronoi domain areas were extracted, permitting a calculation of their respective regularity indexes (RIs). The spatial autocorrelation of the field was also computed, from which the effective radius and packing factor (PF) were determined. Both cone bipolar cell types were found to be less regular and less efficiently packed than either the horizontal cells or cholinergic amacrine cells. Furthermore, while the latter two cell types had RIs and PFs in excess of those for their matched random simulations, the two types of cone bipolar cells had spatial statistical properties comparable to random distributions. An analysis of single labeled cone bipolar cells revealed dendritic arbors frequently skewed to one side of the soma, as would be expected from a randomly distributed population of cells with dendrites that tile. Taken together, these results suggest that, unlike the horizontal cells or cholinergic amacrine cells which minimize proximity to one another, cone bipolar cell types are constrained only by their physical size.


Subject(s)
Retinal Bipolar Cells/cytology , Retinal Cone Photoreceptor Cells/cytology , Amacrine Cells/cytology , Animals , Cell Count , Dendrites/physiology , Mice , Mice, Inbred A , Mice, Inbred C57BL , Retina/cytology , Retinal Horizontal Cells/cytology
14.
J Comp Neurol ; 524(1): 39-53, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26053777

ABSTRACT

Antibodies against calretinin are markers for one type of rod pathway interneuron (AⅡ amacrine cell) in the retina of some but not all mammalian species. The AⅡ cells play a crucial role in night-time (scotopic) vision and have been proposed as a target for optogenetic restoration of vision in retinal disease. In the present study we aimed to characterize the AⅡ cells in human retina. Postmortem human donor eyes were obtained with ethical approval and processed for calretinin immunofluorescence. Calretinin-positive somas in the inner nuclear and the ganglion cell layer were filled with the lipophilic dye DiI. The large majority (over 80%) of calretinin-immunoreactive cells is located in the inner nuclear layer, is immunopositive for glycine transporter 1, and shows the typical morphology of AⅡ amacrine cells. In addition, a small proportion of calretinin-positive cells in the inner nuclear layer and in the ganglion cell layer is glutamic acid decarboxylase-positive and shows the morphology of widefield amacrine cells (stellate, semilunar, and thorny amacrine cells). About half of the calretinin cells in the ganglion cell layer are bistratified ganglion cells resembling the small bistratified (presumed blue-ON/yellow-OFF) and the G17 ganglion cell previously described in primates. We conclude that in human retina, antibodies against calretinin can be used to identify AⅡ amacrine cells in the inner nuclear layer as well as widefield amacrine and small bistratified ganglion cells in the ganglion cell layer.


Subject(s)
Amacrine Cells/cytology , Amacrine Cells/metabolism , Calbindin 2/metabolism , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Adult , Antibodies/metabolism , Calbindin 2/immunology , Carbocyanines , Female , Fluorescent Antibody Technique/methods , Fluorescent Dyes , Humans , Male , Microscopy, Confocal , Middle Aged , Photomicrography
15.
J Comp Neurol ; 523(10): 1529-47, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25630271

ABSTRACT

Amacrine cells comprise ∼ 30 morphological types in the mammalian retina. The synaptic connectivity and function of a few γ-aminobutyric acid (GABA)ergic wide-field amacrine cells have recently been studied; however, with the exception of the rod pathway-specific AII amacrine cell, the connectivity of glycinergic small-field amacrine cells has not been investigated in the mouse retina. Here, we studied the morphology and connectivity pattern of the small-field A8 amacrine cell. A8 cells in mouse retina are bistratified with lobular processes in the ON sublamina and arboreal dendrites in the OFF sublamina of the inner plexiform layer. The distinct bistratified morphology was first visible at postnatal day 8, reaching the adult shape at P13, around eye opening. The connectivity of A8 cells to bipolar cells and ganglion cells was studied by double and triple immunolabeling experiments by using various cell markers combined with synaptic markers. Our data suggest that A8 amacrine cells receive glutamatergic input from both OFF and ON cone bipolar cells. Furthermore, A8 cells are coupled to ON cone bipolar cells by gap junctions, and provide inhibitory input via glycine receptor (GlyR) subunit α1 to OFF cone bipolar cells and to ON A-type ganglion cells. Measurements of spontaneous glycinergic postsynaptic currents and GlyR immunolabeling revealed that A8 cells express GlyRs containing the α2 subunit. The results show that the bistratified A8 cell makes very similar synaptic contacts with cone bipolar cells as the rod pathway-specific AII amacrine cell. However, unlike AII cells, A8 amacrine cells provide glycinergic input to ON A-type ganglion cells.


Subject(s)
Amacrine Cells/cytology , Nerve Net/physiology , Retina/cytology , Alcohol Oxidoreductases , Amacrine Cells/metabolism , Animals , Co-Repressor Proteins , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/cytology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Transcription Factors , Transducin/genetics , Transducin/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Visual Pathways/physiology
16.
Neuron ; 77(3): 503-15, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23395376

ABSTRACT

The retina consists of ordered arrays of individual types of neurons for processing vision. Here, we show that such order is necessary for intrinsically photosensitive retinal ganglion cells (ipRGCs) to function as irradiance detectors. We found that during development, ipRGCs undergo proximity-dependent Bax-mediated apoptosis. Bax mutant mice exhibit disrupted ipRGC spacing and dendritic stratification with an increase in abnormally localized synapses. ipRGCs are the sole conduit for light input to circadian photoentrainment, and either their melanopsin-based photosensitivity or ability to relay rod/cone input is sufficient for circadian photoentrainment. Remarkably, the disrupted ipRGC spacing does not affect melanopsin-based circadian photoentrainment but severely impairs rod/cone-driven photoentrainment. We demonstrate reduced rod/cone-driven cFos activation and electrophysiological responses in ipRGCs, suggesting that impaired synaptic input to ipRGCs underlies the photoentrainment deficits. Thus, for irradiance detection, developmental apoptosis is necessary for the spacing and connectivity of ipRGCs that underlie their functioning within a neural network.


Subject(s)
Apoptosis/physiology , Circadian Rhythm/physiology , Retinal Cone Photoreceptor Cells/physiology , Retinal Ganglion Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Action Potentials/physiology , Action Potentials/radiation effects , Alcohol Oxidoreductases , Animals , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/deficiency , Biophysical Phenomena , Circadian Rhythm/genetics , Co-Repressor Proteins , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation/genetics , Gene Expression Regulation/radiation effects , Green Fluorescent Proteins/genetics , In Situ Nick-End Labeling , In Vitro Techniques , Light Signal Transduction/physiology , Light Signal Transduction/radiation effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/genetics , Motor Activity/radiation effects , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , Photic Stimulation , Proto-Oncogene Proteins c-fos/metabolism , Rod Opsins/metabolism , Tyrosine 3-Monooxygenase/metabolism , Visual Pathways/physiology , bcl-2 Homologous Antagonist-Killer Protein/deficiency , bcl-2-Associated X Protein/deficiency
17.
J Comp Neurol ; 520(7): 1349-64, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22396220

ABSTRACT

Individual types of retinal neurons are distributed to minimize proximity to neighboring cells. Many of these same cell types extend dendrites to provide coverage of the retinal surface. These two cardinal features of retinal mosaics are disrupted, for certain cell types, in mice deficient for the Down syndrome cell adhesion molecule, Dscam, exhibiting an aberrant clustering of somata and fasciculation of dendrites. The Dscam mutant mouse retina also exhibits excess numbers of these same cell types. The present study compared these two features in Dscam mutant retinas with the Bax knockout retina, in which excess numbers of two of these cell types, the melanopsin-positive retinal ganglion cells (MRGCs) and the dopaminergic amacrine cells (DACs), are also present. Whole retinas were immunolabeled for both populations, and every labeled soma was plotted. For the MRGCs, we found a gene dosage effect for Dscam, with the Dscam+/- retinas showing smaller increases in cell number, clustering, and fasciculation. Curiously, Bax-/- retinas, showing numbers of MRGCs intermediate to those found in the Dscam-/- and Dscam+/- retinas, also had clustering and fasciculation phenotypes that were intermediate to retinas with those genotypes. DACs, by comparison, showed changes in both the Dscam-/- and the Bax-/- retinas that did not correlate with their increases in DAC number. The fasciculation phenotype in the Dscam-/- retina was particularly prominent despite only modest clustering. These results demonstrate that the somal clustering and fasciculation observed in the Dscam mutant retina are not unique to Dscam deficiency and are manifested distinctively by different retinal cell types.


Subject(s)
Cell Adhesion Molecules/metabolism , Retinal Neurons/cytology , Retinal Neurons/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Cell Adhesion Molecules/deficiency , Fluorescent Antibody Technique , Mice , Mice, Knockout , Mice, Mutant Strains , Phenotype , Real-Time Polymerase Chain Reaction , bcl-2-Associated X Protein/deficiency
18.
J Neurosci ; 31(40): 14126-33, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21976497

ABSTRACT

The establishment of neuronal circuitry during development relies upon the action of cell-intrinsic mechanisms that specify neuronal form as well as plastic processes that require the transmission of neural activity between afferents and their targets. Here, we examine the role of interactions between neighboring like-type cells within the mouse retina upon neuronal differentiation and circuit formation. Two different genetically modified mouse models were used to modulate the density of homotypic neighbors, the Type 7 cone bipolar cells, without affecting the density of their afferents, the cone photoreceptors. We demonstrate a corresponding plasticity in dendritic field area when the density of Type 7 cone bipolar cells is elevated or reduced. In accord with this variation in dendritic field area across an invariant population of afferents, individual Type 7 cone bipolar cells are also shown to modulate the number of cone pedicles contacted without varying the number of contacts at each cone pedicle. Analysis of developing Type 7 cone bipolar cells reveals that the dendritic tiling present in maturity is achieved secondarily, after an initial stage of dendritic overlap, when the dendritic terminals are stratified at the level of the cone pedicles but are not localized to them. These results demonstrate a conspicuous developmental plasticity in neural circuit formation independent of neural activity, requiring homotypic interactions between neighboring cells that ultimately regulate connectivity within the retina.


Subject(s)
Nerve Net/physiology , Neurons/cytology , Neurons/physiology , Retina/physiology , Retinal Bipolar Cells/physiology , Retinal Cone Photoreceptor Cells/physiology , Visual Pathways/physiology , Animals , Mice , Mice, 129 Strain , Mice, Knockout , Mice, Transgenic , Nerve Net/cytology , Retina/cytology , Retinal Bipolar Cells/cytology , Visual Pathways/cytology
19.
Dev Neurobiol ; 71(12): 1273-85, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21557509

ABSTRACT

Developing retinal neurons differentiate their distinctive dendritic morphologies through cell-intrinsic instructions and cellular interactions within the local environment. This review examines the contributions of interactions with afferents and with homotypic neighbors upon the dendritic morphogenesis of retinal bipolar cells in four different mouse models that modulate the frequency of these interactions. Comparisons with horizontal cell differentiation are discussed, and differences between the dendritic plasticity within the outer versus inner plexiform layers are highlighted. Finally, the developmental plasticity of the bipolar and horizontal cells is considered in light of the natural variation in afferent and target cell number, ensuring a uniformity of coverage and connectivity across the retinal surface.


Subject(s)
Dendrites/ultrastructure , Neuronal Plasticity/physiology , Retina/growth & development , Retinal Neurons/cytology , Retinal Neurons/physiology , Animals , Dendrites/physiology , Mice , Retina/cytology
20.
Vis Neurosci ; 28(1): 39-50, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20950505

ABSTRACT

Two morphological types of melanopsin-expressing ganglion cells have been described in primate retina. Both types show intrinsic light responses as well as rod- and cone-driven ON-type responses. Outer stratifying cells have their dendrites close to the inner nuclear layer (OFF sublamina); inner stratifying cells have their dendrites close to the ganglion cell layer (ON sublamina). Both inner and outer stratifying cells receive synaptic input via ribbon synapses, but the bipolar cell types providing this input have not been identified. Here, we addressed the question whether the diffuse (ON) cone bipolar type DB6 and/or rod bipolar cells contact melanopsin-expressing ganglion cells. Melanopsin containing ganglion cells in marmoset (Callithrix jacchus) and macaque (Macaca fascicularis) retinas were identified immunohistochemically; DB6 cells were labeled with antibodies against the carbohydrate epitope CD15, rod bipolar cells were labeled with antibodies against protein kinase C, and putative synapses between the two cells types were identified with antibodies against piccolo. For one inner cell, nearly all of the DB6 axon terminals that overlap with its dendrites in the two-dimensional space show areas of close contact. In vertical sections, the large majority of the areas of close contact also contain a synaptic punctum, suggesting that DB6 cells contact inner melanopsin cells. The output from DB6 cells accounts for about 30% of synapses onto inner melanopsin cells. Synaptic contacts between rod bipolar axons and inner dendrites were not observed. In the OFF sublamina, about 10% of the DB6 axons are closely associated with dendrites of outer cells, and in about a third of these areas, axonal en passant synapses are detected. This result suggests that DB6 cells may also provide input to outer melanopsin cells.


Subject(s)
Retina/physiology , Retinal Bipolar Cells/physiology , Retinal Ganglion Cells/physiology , Rod Opsins/physiology , Amino Acid Sequence , Animals , Axons/physiology , Axons/ultrastructure , Callithrix , Immunohistochemistry , Macaca fascicularis , Male , Molecular Sequence Data , Protein Kinase C/metabolism , Synapses/physiology , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...