Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959968

ABSTRACT

In tire tread applications, achieving enhanced abrasion resistance, wet grip, and rolling resistance is crucial for optimizing overall performance. To realize improvements in these attributes for silica-filled tire tread compounds, it becomes imperative to improve the dispersity of silica filler by investigating the effect of each component in the tire tread compound. In this work, we study the effect of styrene content within solution styrene butadiene rubber (SSBR) on the properties of tire tread compounds. A higher styrene segment within SSBR contributes to increased silica dispersion and crosslink density. Thus, tire tread compounds featuring SSBR with increased styrene content not only improve physical and mechanical properties, but also enhance major characteristics tailored for tire tread applications. These findings provide valuable insights into advancing the reinforced performance of tire tread compounds through the strategic utilization of SSBR enriched in styrene content.

2.
J Clin Med ; 8(5)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096607

ABSTRACT

The assessment of rupture probability is crucial to identifying at risk intracranial aneurysms (IA) in patients harboring multiple aneurysms. We aimed to develop a computer-assisted detection system for small-sized aneurysm ruptures using a convolutional neural network (CNN) based on images of three-dimensional digital subtraction angiography. A retrospective data set, including 368 patients, was used as a training cohort for the CNN using the TensorFlow platform. Aneurysm images in six directions were obtained from each patient and the region-of-interest in each image was extracted. The resulting CNN was prospectively tested in 272 patients and the sensitivity, specificity, overall accuracy, and receiver operating characteristics (ROC) were compared to a human evaluator. Our system showed a sensitivity of 78.76% (95% CI: 72.30%-84.30%), a specificity of 72.15% (95% CI: 60.93%-81.65%), and an overall diagnostic accuracy of 76.84% (95% CI: 71.36%-81.72%) in aneurysm rupture predictions. The area under the ROC (AUROC) in the CNN was 0.755 (95% CI: 0.699%-0.805%), better than that obtained from a human evaluator (AUROC: 0.537; p < 0.001). The CNN-based prediction system was feasible to assess rupture risk in small-sized aneurysms with diagnostic accuracy superior to human evaluators. Additional studies based on a large data set are necessary to enhance diagnostic accuracy and to facilitate clinical application.

3.
Opt Express ; 19(22): 21803-8, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22109031

ABSTRACT

We investigated nanostructured indium-tin-oxide (ITO) films fabricated by all-solution processing of ITO nanoparticles and a nanoimprint lithography technique. The nanostructured ITO film with one-dimensional periodicity has low sheet resistance of ~200 Ω/sq, high optical transparency of ~80%, and specific transmission spectra due to light diffractions. By using this ITO film as a transparent electrode and an alignment layer of nematic liquid crystals (LCs), we successfully demonstrate the electro-optic performance of LC devices. This functional transparent electrode can give rise to new photonic devices with nanostructures.

5.
Nanoscale Res Lett ; 6(1): 458, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21767390

ABSTRACT

UV curing nanoimprint lithography is one of the most promising techniques for the fabrication of micro- to nano-sized patterns on various substrates with high throughput and a low production cost. The UV nanoimprint process requires a transparent template with micro- to nano-sized surface protrusions, having a low surface energy and good flexibility. Therefore, the development of low-cost, transparent, and flexible templates is essential. In this study, a flexible polyethylene terephthalate (PET) film coated with a fluorinated polymer material was used as an imprinting mold. Micro- and nano-sized surface protrusion patterns were formed on the fluorinated polymer layer by the hot embossing process from a Si master template. Then, the replicated pattern of the fluorinated polymer, coated on the flexible PET film, was used as a template for the UV nanoimprint process without any anti-stiction coating process. In this way, the micro- to nano-sized patterns of the original master Si template were replicated on various substrates, including a flat Si substrate and curved acryl substrate, with high fidelity using UV nanoimprint lithography.

6.
J Nanosci Nanotechnol ; 10(5): 3165-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20358914

ABSTRACT

In this paper, we have investigated the size effect of nano scale PRAM using three-dimensional finite element analysis tool. The reset current and temperature profile of PRAM cells with top and bottom electrode contact hole size were calculated by the numerical method. And temperature profile of PRAM unit cell with size and thickness of GST thin film was simulated. As top electrode contact size was smaller, reset current decreased. But these variations couldn't affect to operate memory. On the other hand, as bottom electrode contact size was smaller, reset current abruptly decreased.

SELECTION OF CITATIONS
SEARCH DETAIL
...