Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 450: 139267, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38615526

ABSTRACT

In this study, kimchi-extracted cellulose was utilized to fabricate edible films using a hot synthetic approach, followed by solvent casting, and employing sorbitol and citric acid as the plasticizer and crosslinker, respectively. The chemical, optical, physical, and thermal properties of these films were explored to provide a comparative assessment of their suitability for various packaging applications. Chemical analyses confirmed that the kimchi-extracted cellulose comprised cellulose Iß and amorphous cellulose and did not contain any impurities. Optical analyses revealed that kimchi-extracted cellulose-containing films exhibited better-dispersed surfaces than films fabricated from commercial cellulose. Physical property analyses indicated their hydrophilic characteristics with contact angles <20°. In the thermal analysis, similar Tg results confirmed the comparable thermal stability between films containing commercial microcrystalline cellulose-containing films and kimchi-extracted cellulose-containing films. Edible films produced from kimchi-extracted cellulose through food-upcycling approaches are therefore promising for applications as packaging materials.


Subject(s)
Cellulose , Citric Acid , Edible Films , Food Packaging , Sorbitol , Food Packaging/instrumentation , Cellulose/chemistry , Citric Acid/chemistry , Sorbitol/chemistry
2.
J Food Sci ; 89(1): 419-434, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010734

ABSTRACT

Carbon dioxide and kimchi odor compounds, formed during fermentation, negatively affect the long-distance distribution of commercial kimchi. To address these issues, in this study, we modified different porous media (activated carbon, bleaching earth, diatomite, and zeolite) using sodium bicarbonate and silver (Ag) ions. Functional sheets were prepared using linear low-density polyethylene, calcium hydroxide, a porous medium, and a blowing agent. Various prepared porous media and sheets were effective in removing acetic acid, sulfur compounds (allyl methyl sulfide, dimethyl disulfide, allyl methyl disulfide, and diallyl disulfide), and carbon dioxide. Porous media with micropores exhibited a sulfur compound removal efficiency of 43.5%-99.4%, while no effect was observed on acetic acid removal. However, porous media with mesopores showed an acetic acid removal efficiency of 42.3%-90.7%, with no reduction in sulfur compounds removal. The impregnation of porous materials with sodium bicarbonate significantly (p < 0.05) enhanced the acetic acid removal activity. Ag modification improved the sulfur compound removal of the mesoporous bleaching earth and diatomite statistically (p < 0.05). Additionally, the incorporation of sodium bicarbonate-impregnated mesoporous media significantly improved carbon dioxide removal, reducing concentrations from 25.97% to 14.27% with respect to the control group. Our functional food packaging materials can solve the current issues in kimchi distribution by removing carbon dioxide and kimchi odor without affecting its quality. PRACTICAL APPLICATION: Food active packaging materials containing calcium hydroxide and modified porous medium are effective in removing carbon dioxide and kimchi odor (acetic acid and sulfur compounds). The removal of carbon dioxide and kimchi odor, which adversely affect the distribution and sale of commercial kimchi, can help solve the current issues with kimchi distribution without affecting its quality.


Subject(s)
Anti-Infective Agents , Diatomaceous Earth , Fermented Foods , Carbon Dioxide , Calcium Hydroxide , Odorants , Porosity , Sodium Bicarbonate , Sulfur Compounds , Acetates
3.
ACS Omega ; 8(9): 8256-8262, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910935

ABSTRACT

During storage and fermentation of kimchi, white film-forming yeasts (WFY) are generated on the surface of kimchi under various conditions. These yeasts include Candida sake, Pichia kudriavzevii, Kazachstania servazzii, Debaryomyces hansenii, and Hanseniaspora uvarum. Because of the off-odor and texture-softening properties of WFY that degrade the quality of kimchi, a method to prevent WFY is required. In this study, cinnamaldehyde (CIN) and gold nanoparticles (AuNPs) with a large surface area were grafted on a paper surface, which was termed the "Paper_AuNPs_CIN" film. CIN is an antimicrobial agent that is approved for use in food applications. In the as-fabricated Paper_AuNPs_CIN film, antimicrobial CIN molecules were physically adsorbed to the surface of AuNPs and simultaneously chemically synthesized on the paper surface via the imine reaction. The Paper_AuNPs_CIN film exhibited greater antimicrobial activity against the three WFY strains than a Paper_CIN film (which contains only CIN molecules). Since more CIN molecules were adsorbed to the large surface area of the paper-reduced AuNPs, the Paper_AuNPs_CIN film exhibited a higher antimicrobial activity. Using AuNPs and CIN simultaneously to inhibit the growth of WFY is a novel approach that has not yet been reported. The morphology and elemental mapping of the functionalized films were examined via scanning electron microscopy and energy-dispersive spectroscopy, elemental composition was analyzed via inductively coupled plasma optical emission spectroscopy, and chemical bonding and optical properties were investigated via Fourier transform infrared spectroscopy and diffuse reflectance spectroscopy. Additionally, agar-well diffusion assays were used to determine the antimicrobial activity against three representative WFY strains: C. sake, P. kudriavzevii, and K. servazzii.

4.
J Food Sci ; 88(4): 1610-1622, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36922723

ABSTRACT

The effect of salt concentration (3%, 6%, and 9%) on the mass transfer kinetics of Kimchi cabbage during osmotic dehydration was investigated, including its influence on textural and microstructural properties and salt distribution. First, kinetics was analyzed using diffusion theory to determine the impact of the factors on moisture and salt transfer. Subsequently, using the Peleg, Azuara, Henderson-Pabis, and Page models, mathematical modeling of mass transfer (water loss and salt gain) was investigated. According to the statistical analysis, the Peleg model provided the best fit for the experimental results under the operating conditions. In addition, a novel viewpoint was proposed in which the salt content of Kimchi cabbage may be indirectly forecasted by monitoring solution salinity during osmotic dehydration. Higher salt concentration resulted in decreased hardness, gumminess, and chewiness in Kimchi cabbage. Scanning electron microscopy and energy-dispersive X-ray mapping images showed an intensification of moisture and salt transport with increasing salt content, which were confirmed using modeling studies. The results could be applied in the prediction of the target salinity of Kimchi cabbage during the salting process and could facilitate the improvement of final Kimchi product quality by producing salted Kimchi cabbage with uniform salinity.


Subject(s)
Brassica rapa , Brassica , Fermented Foods , Brassica/chemistry , Kinetics , Dehydration , Sodium Chloride , Sodium Chloride, Dietary
5.
ACS Omega ; 5(8): 4233-4241, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32149253

ABSTRACT

A combination of plasmonic nanoparticles (NPs) with semiconductor photocatalysts, called plasmonic photocatalysts, can be a good candidate for highly efficient photocatalysts using broadband solar light because it can greatly enhance overall photocatalytic efficiency by extending the working wavelength range of light from ultraviolet (UV) to visible. In particular, fixation of plasmonic photocatalysts on a floating porous substrate can have additional advantages for their recycling after water treatment. Here, we report on a floating porous plasmonic photocatalyst based on a polydimethylsiloxane (PDMS)-TiO2-gold (Au) composite sponge, in which TiO2 and Au NPs are simultaneously immobilized on the surface of interconnected pores in the PDMS sponge. This can be easily fabricated by a simple sugar-template method with TiO2 NPs and in situ reduction of Au NPs by the PDMS without extra chemicals. Its ability to decompose the organic pollutant rhodamine B in water was tested under UV and visible light, respectively. The results showed highly enhanced photocatalytic activity under both UV and visible light compared to the PDMS-TiO2 sponge and the PDMS-Au sponge. Furthermore, its recyclability was also demonstrated for multiple cycles. The simplicity of fabrication and high photocatalytic performance of our PDMS-TiO2-Au sponge can be promising in environmental applications to treat water pollution.

6.
ACS Appl Mater Interfaces ; 11(47): 44458-44465, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31718128

ABSTRACT

Plasmonic metal nanostructures with nanogaps have attracted great interest owing to their controllable optical properties and intense electromagnetic fields that can be useful for a variety of applications, but precise and reliable control of nanogaps in three-dimensional nanostructures remains a great challenge. Here, we report the control of nanojunctions of hollow porous gold nanoshell (HPAuNS) structures by a facile oxygen plasma-etching process and the influence of changes in nanocrevices of the interparticle junction on the optical and sensing characteristics of HPAuNSs. We demonstrate a high tunability of the localized surface plasmon resonance (LSPR) peaks and surface-enhanced Raman scattering (SERS) detection of rhodamine 6G (R6G) using HPAuNS structures with different nanojunctions by varying the degree of gold sintering. As the neck region of the nanojunction is further sintered, the main LSPR peak shifts from 785 to 1350 nm with broadening because the charge transfer plasmon mode becomes more dominant than the dipolar plasmon mode, resulting from the increase of conductance at the interparticle junctions. In addition, it is demonstrated that an increase in the sharpness of the nanojunction neck can enhance the SERS enhancement factor of the HPAuNS by up to 4.8-fold. This enhancement can be ascribed to the more intense local electromagnetic fields at the sharper nanocrevices of interparticle junctions. The delicate change of nanojunction structures in HPAuNSs can significantly affect their optical spectrum and electromagnetic field intensity, which are critical for their practical use in a SERS-based analytical sensor as well as multiple-wavelength compatible applications.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 205: 622-629, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30077953

ABSTRACT

A new dual target chemosensor 1, 1,1'­((1E,1'E)­((thiobis(ethane­2,1­diyl))bis(azanylylidene))bis(methanylylidene))bis(naphthalen­2­ol), was prepared by the reaction of a hydroxy-naphthaldehyde and a thiobis(ethylamine). Sensor 1 detected In3+ with turn-on fluorescence and Fe3+ via the change of color from colorless to pale violet. The sensing behaviors of 1 toward In3+ and Fe3+ were studied through photophysical experiments, ESI-mass, NMR titration, and theoretical calculations. In particular, 1 can discriminate In3+ from Al3+ and Fe3+ from Fe2+. Limits of detection for the analysis of In3+ and Fe3+ ions turned out to be 5.89 µM and 0.30 µM, respectively. In addition, sensor 1 functioned practically as a naked-eye test strip for Fe3+ and could be recycled by using EDTA for In3+ and DFO for Fe3+.

8.
Photochem Photobiol Sci ; 16(11): 1677-1689, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-28975169

ABSTRACT

A new Schiff-base colorimetric chemosensor 1 was developed for the detection of Cu2+, Co2+ and S2-. Sensor 1 could simply monitor Cu2+ and Co2+ by a color change from colorless to yellow. The binding modes of 1 to Cu2+ and Co2+ were determined to be a 2 : 1 complexation stoichiometry through Job's plot and ESI-mass spectrometry analysis. The detection limits (0.02 µM and 0.63 µM) for Cu2+ and Co2+ were lower than the recommended values (31.5 µM and 1.7 µM) by the World Health Organization (WHO) for Cu2+ and the Environmental Protection Agency (EPA) for Co2+, respectively. Importantly, 1 could detect and quantify Cu2+ in real water samples. In addition, the Cu2+-2·1 complex could be used as a highly selective colorimetric sensor for S2- in the presence of other anions without any interference. Moreover, the sensing mechanisms of Cu2+ and Co2+ by 1 were explained by theoretical calculations.

9.
J Fluoresc ; 27(4): 1457-1466, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28401409

ABSTRACT

A new fluorescent sensor 1, containing furan and julolidine moieties linked through a Schiff-base, has been synthesized. Distinct "turn-on" fluorescence enhancement of 1 was observed upon the addition of F- in a near-perfect aqueous solution. The binding capabilities of 1 with F- were studied by using fluorescent spectroscopic techniques, ESI-mass analysis and NMR titration measurements. The detection limit for the analysis of F- was found to be 10.02 µM, which is below the WHO guideline (79 µM) for drinking water. Practically, the sensing ability of 1 for F- was successfully applied in real water samples. The sensing mechanism for F- was proposed to be the ICT mechanism via the hydrogen bonding, which was well explained by theoretical calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...