Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3702, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764626

ABSTRACT

The endoplasmic reticulum (ER)-mitochondria contact site (ERMCS) is crucial for exchanging biological molecules such as phospholipids and Ca2+ ions between these organelles. Mitoguardin-2 (MIGA2), a mitochondrial outer membrane protein, forms the ERMCS in higher eukaryotic cells. Here, we report the crystal structures of the MIGA2 Lipid Droplet (LD) targeting domain and the ER membrane protein VAPB bound to the phosphorylated FFAT motif of MIGA2. These structures reveal that the MIGA2 LD targeting domain has a large internal hydrophobic pocket that accommodates phospholipids and that two phosphorylations of the FFAT motif are required for tight interaction of MIGA2 with VAPB, which enhances the rate of lipid transport. Further biochemical studies show that MIGA2 transports phospholipids between membranes with a strong preference for binding and trafficking phosphatidylserine (PS). These results provide a structural and molecular basis for understanding how MIGA2 mediates the formation of ERMCS and facilitates lipid trafficking at the ERMCS.


Subject(s)
Endoplasmic Reticulum , Mitochondrial Membranes , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Phospholipids/metabolism
2.
Sci Rep ; 10(1): 3062, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080308

ABSTRACT

Mutations in human PAX6 gene are associated with various congenital eye malformations including aniridia, foveal hypoplasia, and congenital nystagmus. These various phenotypes may depend on the mutation spectrums that can affect DNA-binding affinity, although this hypothesis is debatable. We screened PAX6 mutations in two unrelated patients with congenital nystagmus, and measured DNA-binding affinity through isothermal titration calorimetry (ITC). To elucidate phenotypic differences according to DNA-binding affinity, we also compared DNA-binding affinity among the previously reported PAX6 missense mutations within the linker region between two subdomains of the paired domain (PD). We identified two novel mutations of PAX6 gene: c.214 G > T (p.Gly72Cys) and c.249_250delinsCGC (p.Val84Alafs*8). Both were located within the linker region between the two subdomains of the PD. ITC measurement revealed that the mutation p.Val84Alafs*8 had no DNA-binding affinity, while the p.Gly72Cys mutation showed a decreased binding affinity (Kd = 0.58 µM) by approximately 1.4 times compared to the wild type-PAX6 (Kd = 0.41 µM). We also found that there was no close relationship between DNA-binding affinity and phenotypic differences. Our results suggest that the DNA-binding affinity alone might be insufficient to determine PAX6-related phenotypes, and that other modifier genes or environmental factors might affect phenotypes of the PAX6 gene.


Subject(s)
DNA/metabolism , Mutation, Missense/genetics , PAX6 Transcription Factor/genetics , Adolescent , Amino Acid Sequence , Base Sequence , Child, Preschool , Female , Humans , Male , PAX6 Transcription Factor/chemistry , Pedigree , Protein Binding , Protein Domains
3.
Front Neurol ; 10: 1424, 2019.
Article in English | MEDLINE | ID: mdl-32038468

ABSTRACT

Objectives: The cause of Meniere's disease (MD) is unclear but likely involves genetic and environmental factors. The aim of this study was to investigate the genetic basis underlying MD by screening putative candidate genes for MD. Methods: Sixty-eight patients who met the diagnostic criteria for MD of the Barany Society were included. We performed targeted gene sequencing using next generation sequencing (NGS) panel composed of 45 MD-associated genes. We identified the rare variants causing non-synonymous amino acid changes, stop codons, and insertions/deletions in the coding regions, and excluded the common variants with minor allele frequency >0.01 in public databases. The pathogenicity of the identified variants was analyzed by various predictive tools and protein structural modeling. Results: The average read depth for the targeted regions was 1446.3-fold, and 99.4% of the targeted regions were covered by 20 or more reads, achieving the high quality of the sequencing. After variant filtering, annotation, and interpretation, we identified a total of 15 rare heterozygous variants in 12 (17.6%) sporadic patients. Among them, four variants were detected in familial MD genes (DTNA, FAM136A, DPT), and the remaining 11 in MD-associated genes (PTPN22, NFKB1, CXCL10, TLR2, MTHFR, SLC44A2, NOS3, NOTCH2). Three patients had the variants in two or more genes. All variants were not detected in our healthy controls (n = 100). No significant differences were observed between patients with and without a genetic variant in terms of sex, mean age of onset, bilaterality, the type of MD, and hearing threshold at diagnosis. Conclusions: Our study identified rare variants of putative candidate genes in some of MD patients. The genes were related to the formation of inner ear structures, the immune-associated process, or systemic hemostasis derangement, suggesting the multiple genetic predispositions in the development of MD.

SELECTION OF CITATIONS
SEARCH DETAIL
...