Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(5): 5896-5904, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38266753

ABSTRACT

Cationic alteration related to a sodium super ion conductor (NASICON)-structured Na3V2(PO4)3 (NVP) is an effective strategy for formulating high-energy and stable cathodes for sodium-ion batteries (SIBs). In this study, we altered the structure of NVP with dual cations, namely, Cr and Fe, to develop Na3V1.5Cr0.4Fe0.1(PO4)3 cathodes for SIBs with high-rate capability (∼71 mAh g-1 at 100 C) and an extreme cycle life output (∼75 mAh g-1 with 95% capacity retention for 10,000 cycles). These excellent electrochemical properties can be ascribed to the synergistic effects of Cr and Fe in the NVP structure, as verified experimentally and theoretically. Therefore, the proposed cosubstitution method can enhance the performance of SIBs by improving their structural stability, electronic conductivity, and phase-change behavior.

2.
Small Methods ; 8(1): e2301158, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37821419

ABSTRACT

Alloying-type metallic tin is perceived as a potential anode material for K-ion batteries owing to its high theoretical capacity and reasonable working potential. However, pure Sn still face intractable issues of inferior K+ storage capability owing to the mechanical degradation of electrode against large volume changes and formation of intermediary insulating phases K4 Sn9 and KSn during alloying reaction. Herein, the TiC/C-carbon nanotubes (CNTs) is prepared as an effective buffer matrix and composited with Sn particles (Sn-TiC/C-CNTs) through the high-energy ball-milling method. Owing to the conductive and rigid properties, the TiC/C-CNTs matrix enhances the electrical conductivity as well as mechanical integrity of Sn in the composite material and thus ultimately contributes to performance supremacy in terms of electrochemical K+ storage properties. During potassiation process, the TiC/C-CNTs matrix not only dissipates the internal stress toward random radial orientations within the Sn particle but also provides electrical pathways for the intermediate insulating phases; this tends to reduce microcracking and prevent considerable electrode degradation.

3.
ACS Appl Mater Interfaces ; 13(45): 53877-53891, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34743513

ABSTRACT

In this study, magnesium-ion-substituted, sodium-deficient, P3- and P2-layered manganese oxide cathodes (Na0.67Mg0.1Mn0.9O2) were synthesized through a facile polyol-assisted combustion technique for applications in sodium-ion batteries. The electrochemical reaction pathways, structural integrity, and long cycling ability at low current rates of the P3- and P2-phases of the Na0.67Mg0.1Mn0.9O2 cathodes were investigated using time-consuming techniques, such as galvanostatic titration and series cyclic voltammetry. The results obtained from these techniques were supported by those obtained from operando X-ray diffraction (XRD) analysis. Particularly, the P2-phase provided excellent structural stability owing to its intrinsic crystal structure, thereby exhibiting a reversible capacity retention of 82.6% after 262 cycles at a low rate of 0.1 C; in contrast, the P3-phase exhibited a capacity retention of 38.7% after 241 cycles at a similar current rate. The air stability of these as-prepared powders, which were stored under ambient conditions, was progressively analyzed over a period of 6 months through XRD without conducting any special experiments. The results suggest that in the P3-phase, the formation of NaHCO3 and hydrated phase impurities, resulting from Na+/H+ exchange and hydration reactions, respectively, was likely to occur more quickly, that is, within a few days, compared to that in the P2-phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...