Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108458

ABSTRACT

Microglia-associated neuroinflammation is recognized as a critical factor in the pathogenesis of neurodegenerative diseases; however, there is no effective treatment for the blockage of neurodegenerative disease progression. In this study, the effect of nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, on lipopolysaccharide (LPS)-induced inflammatory responses was investigated using murine microglial BV2 cells. Cell viability was assessed using the MTT assay, whereas nitric oxide (NO) production was analyzed using the Griess reagent. Secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) was detected by the ELISA. The expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs) and NLRP3 inflammasome-related proteins was assessed by Western blot. The production of mitochondrial reactive oxygen species (ROS) and intracellular ROS was detected using flow cytometry. Our experimental results indicated that nordalbergin ≤20 µM suppressed NO, IL-6, TNF-α and IL-1ß production; decreased iNOS and COX-2 expression; inhibited MAPKs activation; attenuated NLRP3 inflammasome activation; and reduced both intracellular and mitochondrial ROS production by LPS-stimulated BV2 cells in a dose-dependent manner. These results demonstrate that nordalbergin exhibits anti-inflammatory and anti-oxidative activities through inhibiting MAPK signaling pathway, NLRP3 inflammasome activation and ROS production, suggesting that nordalbergin might have the potential to inhibit neurodegenerative disease progression.


Subject(s)
Lipopolysaccharides , Neurodegenerative Diseases , Mice , Animals , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Microglia/metabolism , Reactive Oxygen Species/metabolism , Neuroinflammatory Diseases , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neurodegenerative Diseases/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism
2.
Pharmaceutics ; 13(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202556

ABSTRACT

Most rotator cuff (RC) tears occur at the bone-tendon interface and cause disability and pain. Farnesol, a sesquiterpene compound, can exert antioxidative and anti-inflammatory effects and promote collagen synthesis. In this rabbit model, either commercial SurgiWrap membrane or hydrogel membranes containing various compositions of gellan gum, hyaluronic acid, and farnesol (hereafter GHF membranes) were applied to the tear site, and the repair of the cuff was examined 2 and 3 weeks afterward. The designed membranes swelled rapidly and adsorbed onto the tear site more readily and closely than the SurgiWrap membrane. The membranes degraded slowly and functioned as both a barrier and a vehicle of slow farnesol release during the repair period. Farnesol enhanced collagen production in myoblasts and tenocytes, and interleukin 6 and tumor necrosis factor α levels were modulated. Gross observations and histological examinations indicated that the GHF membranes impregnated with 4 mM farnesol resulted in superior RC repair. In sum, the slow release of farnesol from hydrogel membranes can be beneficial in the repair of RC injuries.

3.
Int J Mol Sci ; 22(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199947

ABSTRACT

Particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) increases oxidative stress through free radical generation and incomplete volatilization. In addition to affecting the respiratory system, PM2.5 causes aging- and inflammation-related damage to skin. Farnesol (Farn), a natural benzyl semiterpene, possesses anti-inflammatory, antioxidative, and antibacterial properties. However, because of its poor water solubility and cytotoxicity at high concentrations, the biomedical applications of Farn have been limited. This study examined the deleterious effects of PM2.5 on the epidermis and dermis. In addition, Farn-encapsulated liposomes (Lipo-Farn) and gelatin/HA/xanthan gel containing Lipo-Farn were prepared and applied in vivo to repair and alleviate PM2.5-induced damage and inflammation in skin. The prepared Lipo-Farn was 342 ± 90 nm in diameter with an encapsulation rate of 69%; the encapsulation significantly reduced the cytotoxicity of Farn. Lipo-Farn exhibited a slow-release rate of 35% after 192 h of incubation. The half-maximal inhibitory concentration of PM2.5 was approximately 850 µg/mL, and ≥400 µg/mL PM2.5 significantly increased IL-6 production in skin fibroblasts. Severe impairment in the epidermis and hair follicles and moderate impairment in the dermis were found in the groups treated with post-PM2.5 and continuous subcutaneous injection of PM2.5. Acute and chronic inflammation was observed in the skin in both experimental categories in vivo. Treatment with 4 mM Lipo-Farn largely repaired PM2.5-induced injury in the epidermis and dermis, restored injured hair follicles, and alleviated acute and chronic inflammation induced by PM2.5 in rat skin. In addition, treatment with 4 mM pure Farn and 2 mM Lipo-Farn exerted moderate reparative and anti-inflammatory effects on impaired skin. The findings of the current study indicate the therapeutic and protective effects of Lipo-Farn against various injuries caused by PM2.5 in the pilosebaceous units, epidermis, and dermis of skin.


Subject(s)
Dermis/drug effects , Epidermis/drug effects , Farnesol/pharmacology , Liposomes/administration & dosage , Particulate Matter/toxicity , Protective Agents/pharmacology , Skin Diseases/drug therapy , Animals , Antioxidants , Dermis/pathology , Epidermis/pathology , Female , Liposomes/chemistry , Rats , Rats, Sprague-Dawley , Skin Diseases/chemically induced , Skin Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...