Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Dent Sci ; 19(1): 79-85, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303807

ABSTRACT

Background/purpose: Oral submucosal fibrosis (OSF) is a premalignant disorder positively associated with betel nut chewing. Recent studies supported the promising benefits of histone deacetylase (HDAC) inhibitors for fibrosis treatment. Here we aim to clarify the pro-fibrogenic role of HDAC9 in regulating OSF. Materials and methods: Healthy and OSF specimens were collected to investigate the clinical significance of HDAC9. Chronic arecoline treatment process was used to induce arecoline-mediated myofibroblasts-related activation of primary buccal mucosa fibroblasts (BMFs). Functional analysis of collagen gel contraction, transwell migration, and wound-healing assays were performed to assess the change in pro-fibrogenic properties of BMFs and fibrotic BMFs (fBMFs). Lentiviral-mediated HDAC9 knockdown was used to verify the role of HDAC9 in the pro-fibrogenic process. Results: We found that arecoline significantly increased the mRNA and protein expression of HDAC9 of BMFs in a dose-dependent manner. Knockdown of HDAC9 in BMFs reversed the strengthened effects of arecoline on collagen gel contraction, cell migration, and wound-healing ability. We further demonstrated that knockdown of HDAC9 in fBMFs significantly attenuated its inherent pro-fibrogenic properties. Furthermore, we confirmed a significantly increased expression of HDAC9 mRNA in OSF compared to normal tissues, which suggested a positive correlation between the up-regulation of HDAC9 and OSF. Conclusion: We demonstrated that silencing of HDAC9 inhibited arecoline-induced activation and inherent pro-fibrogenic properties, suggesting potential therapeutics by targeting HDAC9 in the OSF treatment.

3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555480

ABSTRACT

Cannabidiol (CBD) is an active natural compound that is extracted from Cannabis sativa. Previous studies show that CBD is a nonpsychotropic compound with significant anticancer effects. This study determines its cytotoxic effect on oral cancer cells and OEC-M1 cells and compares the outcomes with a chemotherapeutic drug, cisplatin. This study has investigated the effect of CBD on the viability, apoptosis, morphology, and migration of OEC-M1 cells. Electric cell-substrate impedance sensing (ECIS) is used to measure the change in cell impedance for cells that are treated with a series concentration of CBD for 24 h. AlamarBlue and annexin V/7-AAD staining assays show that CBD has a cytotoxic effect on cell viability and induces cell apoptosis. ECIS analysis shows that CBD decreases the overall resistance and morphological parameters at 4 kHz in a concentration-dependent manner. There is a significant reduction in the wound-healing recovery rate for cells that are treated with 30 µM CBD. This study demonstrates that ECIS can be used for in vitro screening of new chemotherapy and is more sensitive, functional, and comprehensive than traditional biochemical assays. CBD also increases cytotoxicity on cell survival and the migration of oral cancer cells, so it may be a therapeutic drug for oral cancer.


Subject(s)
Antineoplastic Agents , Cannabidiol , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Cannabidiol/pharmacology , Carcinoma, Squamous Cell/drug therapy , Squamous Cell Carcinoma of Head and Neck , Electric Impedance , Mouth Neoplasms/drug therapy , Antineoplastic Agents/pharmacology
4.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012403

ABSTRACT

MYC has a short half-life that is tightly regulated through phosphorylation and proteasomal degradation. Many studies have claimed that treatment with disulfiram (DSF) with or without copper ions can cause cancer cell death in a reactive oxygen species (ROS)-dependent manner in cancer cells. Our previous study showed that the levels of c-Myc protein and the phosphorylation of threonine 58 (T58) and serine 62 (S62) increased in DSF-Cu-complex-treated oral epidermoid carcinoma Meng-1 (OECM-1) cells. These abovementioned patterns were suppressed by pretreatment with an ROS scavenger, N-acetyl cysteine. The overexpression of c-Myc failed to induce hypoxia-inducible factor 1α protein expression, which was stabilized by the DSF-Cu complex. In this study, we further examined the regulatory mechanism behind the induction of the c-Myc of the DSF-Cu complex in an OECM-1 cell compared with a Smulow-Glickman (SG) human normal gingival epithelial cell. Our data showed that the downregulation of c-Myc truncated nick and p62 and the induction of the ratio of H3P/H3 and p-ERK/ERK might not be involved in the increase in the amount of c-Myc via the DSF/copper complexes in OECM-1 cells. Combined with the inhibitors for various signaling pathways and cycloheximde treatment, the increase in the amount of c-Myc with the DSF/copper complexes might be mediated through the increase in the stabilities of c-Myc (T58) and c-Myc (S62) proteins in OECM-1 cells. In SG cells, only the c-Myc (T58) protein was stabilized by the DSF-Cu (I and II) complexes. Hence, our findings could provide novel regulatory insights into the phosphorylation-dependent stability of c-Myc in DSF/copper-complex-treated oral squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Copper/metabolism , Copper/pharmacology , Disulfiram/pharmacology , Humans , Mouth Neoplasms/drug therapy , Phosphorylation , Proto-Oncogene Proteins c-myc/metabolism , Reactive Oxygen Species/metabolism , Serine/metabolism , Threonine/metabolism
5.
J Dent Sci ; 17(2): 718-724, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35756756

ABSTRACT

Background/purpose: Oral cancer has been recognized as one of the most common malignancies worldwide and ranks the fifth leading cause of cancer death in Taiwan. A variety of studies have demonstrated that microRNAs are involved in the regulation of the hallmarks of oral carcinogenesis. Nevertheless, the effect of miR-1266-5p on the tumorigenesis of oral cancer has not been investigated, and not to mention, its functional role in oral cancer. Materials and methods: The upregulation of miR-1266-5p in SASVO3 and SASM5 cells was identified by RNA-Seq and examined by qRT-PCR analysis. The phenotypic assays including proliferation activity, migration capacity, invasion, wound healing, and colony-forming abilities were conducted in oral cancer cells after knockdown of miR-1266-5p. Luciferase reporter and western blotting were used to validate DAB2IP was a direct target of miR-1266-5p in oral cancer. Results: We identified that miR-1266-5p was significantly overexpressed in highly tumorigenic SASVO3 cells and metastatic SASM5 cells. qRT-PCR revealed that miR-1266 significantly increased upregulated in oral cancer and lymph node metastatic tissues compared to normal counterparts We found that downregulation of miR-1266-5p inhibited the proliferation and clonogenicity capacities of SASVO3 cells. Knockdown of miR-1266-5p also inhibited migration/invasion and self-renewal abilities in SASM5 cells. Moreover, we validated miR-1266-5p directly bound to the 3'UTR of DAB2IP in oral cancer cells. We found that DAB2IP knockdown reversed the inhibitory effects of self-renewal and migration mediated by silencing of miR-1266-5p. Conclusion: miR-1266 functions as a biomarker in oral cancer patients, and downregulation of miR-1266 may ameliorate the oncogenic and metastasis potential of oral cancer by targeting DAB2IP.

6.
Biosensors (Basel) ; 12(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35624605

ABSTRACT

Andrographolide is an active diterpenoid compound extracted from Andrographis paniculata. It exhibits antiinflammatory and anticancer effects. Previous studies show that it is non-toxic to experimental animals. The leading causes of cancer are chronic inflammation and high blood glucose. This study determines the cytotoxic effect of andrographolide on cellular morphology, viability, and migration for human oral epidermoid carcinoma cell Meng-1 (OEC-M1). We use electric cell-substrate impedance sensing (ECIS) to measure the subsequent overall impedance changes of the cell monolayer in response to different concentrations of andrographolide for 24 h (10-100 µM). The results for exposure of OEC-M1 cells to andrographolide (10-100 µM) for 24 h show a concentration-dependent decrease in the overall measured resistance at 4 kHz. AlamarBlue cell viability assay and annexin V also show the apoptotic effect of andrographolide on OEC-M1 cells. A reduction in wound-healing recovery rate is observed for cells treated with 30 µM andrographolide. This study demonstrates that ECIS can be used for the in vitro screening of anticancer drugs. ECIS detects the cytotoxic effect of drugs earlier than traditional biochemical assays, and it is more sensitive and shows more detail.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Diterpenes , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cell Survival , Diterpenes/chemistry , Diterpenes/pharmacology , Humans
7.
Sci Rep ; 11(1): 23524, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876632

ABSTRACT

This study investigates an association between oral cancers and the risk of developing depression. We conducted a total of 3031 patients with newly diagnosed oral cancers and 9093 age-, sex-, and index year-matched controls (1:3) from 2000 to 2013 were selected from the National Health Insurance Research Database (NHIRD) of Taiwan. After adjusting for confounding factors, multivariate Cox proportional hazards analysis was used to compare the risk of depression over a 13-year follow-up. Of the patients with oral cancer, 69 (2.28%, or 288.57 per 105 person-years) developed depression compared to 150 (1.65%, 135.64 per 105 person-years) in the control group. The Cox proportional hazards regression analysis showed that the adjustment hazard ratio (HR) for subsequent depression in patients with oral cancer diagnosed was 2.224 (95% Confidence Interval [CI] 1.641-3.013, p < 0.001). It is noteworthy that in the sensitivity analysis is the adjusted HR in the group with depression diagnosis was 3.392 and in the oral cancer subgroup of "Tongue" was 2.539. This study shows oral cancer was associated with a significantly increased risk for developing subsequent depression and early identification and treatment of depression in oral cancer patients is crucial.


Subject(s)
Depression/etiology , Mouth Neoplasms/complications , Mouth Neoplasms/psychology , Adult , Aged , Cohort Studies , Databases, Factual , Female , Humans , Incidence , Male , Middle Aged , Multivariate Analysis , Proportional Hazards Models , Regression Analysis , Risk Factors , Taiwan , Young Adult
8.
Polymers (Basel) ; 13(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34685352

ABSTRACT

Three-dimensional (3D) printing technology is now widely used in biomedical developments. Especially, photo-curing systems provide high resolution and precision. The current goal of biomedical 3D printing technology is the printing of human organs, but the current commercial photo-curable materials generally have high mechanical strength that cannot meet the mechanical properties of the object to be printed. In this research, a gastric model was printed using a photo-curing 3D printing technique. To mimic the wrinkle pattern of human gastric tissue, cis-1,4 polyisoprene with different reactive diluents was mixed and identified a formulation that produced a print with human gastric softness. This research discussed the effect of the Young's modulus of the material and elucidated the relationship between the degree of conversion rate and viscosity. After modifying the cis-1,4 polyisoprene surface from hydrophobic to hydrophilic, we then evaluated its adhesion efficiency for gastric mucin and the gastrointestinal-inhabiting bacterium Helicobacter pylori.

9.
Biomater Res ; 25(1): 31, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34625115

ABSTRACT

BACKGROUND: Gastroretentive drug delivery system (GDDS) are novel systems that have been recently developed for treating stomach diseases. The key function of all GDDS systems is to control the retention time in the stomach. However, research into the bulk density or entanglement of polymers, especially regarding their effects on drug float and release times, is scarce. METHODS: In this research, we prepared the floating core-shell beads carrying tetracycline. The ratio of chitosan and xanthan gum in the shell layer was changed to modify polymer compactness. Tetracycline was encapsulated in the alginate core. RESULTS: Using scanning electron microscopy (SEM) techniques, we observed that the shell formulation did not change the bead morphology. The cross-sectional images showed that the beads were highly porous. The interaction between anionic xanthan gum and cationic chitosan made the shell layer dense, resisting to the mass transfer in the shell layer. Due to the high mass transfer resistance to water penetration, the longer float and delivery time were caused by the dense surface of the beads. The cell culture demonstrated that floating core-shell beads were biocompatible. Importantly, the beads with tetracycline showed a significant prolonged anti-bacterial effect. CONCLUSION: Research results proved that the floating and releasing progress of core-shell beads can be well controlled by adjusting the shell layer formulation that could promote the function of gastroretentive drugs.

10.
Int J Mol Sci ; 22(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918312

ABSTRACT

Disulfiram (DSF), an irreversible aldehyde dehydrogenase inhibitor, is being used in anticancer therapy, as its effects in humans are known and less adverse than conventional chemotherapy. We explored the potential mechanism behind the cytotoxicity of DSF-Cu+/Cu2+ complexes in oral epidermoid carcinoma meng-1 (OECM-1) and human gingival epithelial Smulow-Glickman (SG) cells. Exposure to CuCl2 or CuCl slightly but concentration-dependently decreased cell viability, while DSF-Cu+/Cu2+ induced cell death in OECM-1 cells, but not SG cells. DSF-Cu+/Cu2+ also increased the subG1 population and decreased the G1, S, and G2/M populations in OECM-1 cells, but not SG cells, and suppressed cell proliferation in both OECM-1 and SG cells. ALDH enzyme activity was inhibited by CuCl and DSF-Cu+/Cu2+ in SG cells, but not OECM-1 cells. ROS levels and cellular senescence were increased in DSF-Cu+/Cu2+-treated OECM-1 cells, whereas they were suppressed in SG cells. DSF-Cu+/Cu2+ induced mitochondrial fission in OECM-1 cells and reduced mitochondrial membrane potential. CuCl2 increased but DSF- Cu2+ impaired oxygen consumption rates and extracellular acidification rates in OECM-1 cells. CuCl2 stabilized HIF-1α expression under normoxia in OECM-1 cells, and complex with DSF enhanced that effect. Levels of c-Myc protein and its phosphorylation at Tyr58 and Ser62 were increased, while levels of the N-terminal truncated form (Myc-nick) were decreased in DSF-Cu+/Cu2-treated OECM-1 cells. These effects were all suppressed by pretreatment with the ROS scavenger NAC. Overexpression of c-Myc failed to induce HIF-1α expression. These findings provide novel insight into the potential application of DSF-CuCl2 complex as a repurposed agent for OSCC cancer therapy.


Subject(s)
Acetaldehyde Dehydrogenase Inhibitors/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Copper/therapeutic use , Disulfiram/therapeutic use , Mouth Neoplasms/drug therapy , Acetaldehyde Dehydrogenase Inhibitors/chemistry , Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Carcinoma, Squamous Cell/metabolism , Copper/chemistry , Disulfiram/chemistry , Disulfiram/pharmacology , Drug Repositioning , Drug Screening Assays, Antitumor , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/drug effects , Mouth Neoplasms/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-myc/metabolism
11.
Sensors (Basel) ; 21(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923058

ABSTRACT

Electric cell-substrate impedance sensing (ECIS) has been used as a real-time impedance-based method to quantify cell behavior in tissue culture. The method is capable of measuring both the resistance and capacitance of a cell-covered microelectrode at various AC frequencies. In this study, we demonstrate the application of high-frequency capacitance measurement (f = 40 or 64 kHz) for the sensitive detection of both the micromotion and wound-healing migration of human mesenchymal stem cells (hMSCs). Impedance measurements of cell-covered electrodes upon the challenge of various concentrations of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), from 0.1 to 30 µM, were conducted using ECIS. FCCP is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS), thereby reducing mitochondrial ATP production. By numerically analyzing the time-series capacitance data, a dose-dependent decrease in hMSC micromotion and wound-healing migration was observed, and the effect was significantly detected at levels as low as 0.1 µM. While most reported works with ECIS use the resistance/impedance time series, our results suggest the potential use of high-frequency capacitance time series for assessing migratory cell behavior such as micromotion and wound-healing migration.


Subject(s)
Stem Cells , Wound Healing , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone , Electric Impedance , Humans , Mitochondria
12.
Materials (Basel) ; 14(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477485

ABSTRACT

Magnesium alloys with coatings have the potential to be used for bone substitute alternatives since their mechanical properties are close to those of human bone. However, the surface modification of magnesium alloys to increase the surface biocompatibility and reduce the degradation rate remains a challenge. Here, FHA-Mg scaffolds were made of magnesium alloys and coated with fluorohydroxyapatite (FHA). Human mesenchymal stem cells (hMSCs) were cultured on FHA-Mg scaffolds and cell viability, proliferation, and osteogenic differentiation were investigated. The results showed that FHA-Mg scaffolds display a nano-scaled needle-like structure of aggregated crystallites on their surface. The average Mg2+ concentration in the conditioned media collected from FHA-Mg scaffolds (5.8-7.6 mM) is much lower than those collected from uncoated, Mg(OH)2-coated, and hydroxyapatite (HA)-coated samples (32.1, 17.7, and 21.1 mM, respectively). In addition, compared with hMSCs cultured on a culture dish, cells cultured on FHA-Mg scaffolds demonstrated better proliferation and comparable osteogenic differentiation. To eliminate the effect of osteogenic induction medium, hMSCs were cultured on FHA-Mg scaffolds in culture medium and an approximate 66% increase in osteogenic differentiation was observed three weeks later, indicating a significant effect of the nanostructured surface of FHA-Mg scaffolds on hMSC behaviors. With controllable Mg2+ release and favorable mechanical properties, porous FHA-Mg scaffolds have a great potential in cell-based bone regeneration.

13.
J Cell Physiol ; 236(2): 1515-1528, 2021 02.
Article in English | MEDLINE | ID: mdl-32841374

ABSTRACT

The homeostasis of intracellular pH (pHi ) affects many cellular functions. Our previous study has established a functional and molecular model of the active pHi regulators in human induced pluripotent stem cells (hiPSCs). The aims of the present study were to further quantify passive pHi buffering power (ß) and to investigate the effects of extracellular pH and Na+ -H+ exchanger 1 (NHE1) activity on pluripotency in hiPSCs. pHi was detected by microspectrofluorimetry with pH-sensitive dye-BCECF. Western blot, immunofluorescence staining, and flow cytometry were used to detect protein expression and pluripotency. Our study in hiPSCs showed that (a) the value of total (ßtot ), intrinsic (ßi ), and CO2 -dependent ( ßCO2 ) buffering power all increased while pHi increased; (b) during the spontaneous differentiation for 4 days, the ß values of ßtot and ßCO2 changed in a tendency of decrease, despite the absence of statistical significance; (c) an acidic cultured environment retained pluripotency and further upregulated expression and activity of NHE1 during spontaneous differentiation; (d) inhibition on NHE1 activity promoted the loss of pluripotency. In conclusion, we, for the first time, established a quantitative model of passive ß during differentiation and demonstrated that maintenance of NHE1 at a higher level was of critical importance for pluripotency retention in hiPSCs.


Subject(s)
Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/drug effects , Sodium-Hydrogen Exchanger 1/genetics , Acids/pharmacology , Gene Expression Regulation/drug effects , Homeostasis/drug effects , Humans , Hydrogen-Ion Concentration , Pluripotent Stem Cells/drug effects
15.
J Microbiol Immunol Infect ; 53(6): 986-995, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32684341

ABSTRACT

BACKGROUND/PURPOSE: Allergen-specific immunotherapy (SIT) is now considered curative to allergic diseases such as asthma. Mechanistically, our previous work showed DNA hypermethylation of cytokine genes, in T-helper cells, in allergic asthmatic children treated with allergen-SIT. In this study, we extended to work to assess possible changes in the DNA methylomes of peripheral blood mononuclear cells (PBMCs), isolated from mite allergen-SIT asthmatic children, to explore further the underlying methylation changes. METHODS: Thirteen allergic asthmatic children who received Der p-SIT, 12 non-SIT allergic asthmatic controls, and 12 healthy controls were enrolled. Bisulfite-converted DNA from Der p-stimulated PBMCs was analyzed using Human Methylation 450 k BeadChip. Pyrosequencing and quantitative real-time PCR were used to validate the DNA methylation levels and the gene expression of individual samples. RESULTS: We identified 108 significantly differentially methylated regions (DMRs) unique to Der p-treated PBMCs, with 53 probes linked to demethylated DMRs, and 55 probes linked to methylated DMRs. Three associated genes (BCL6, HSPG2, and HSP90AA1), of selected DMRs, were subjected to bisulfite pyrosequencing. Of these, BCL6 showed significant hypomethylation, while HSPG2 and HSP90AA1 were hypermethylated in SIT group, compared to the AA group. Furthermore, SIT group had significantly higher gene expression of BCL6 and lower gene expression of HSPG2. KEGG pathway analysis further revealed DMR genes involved in ECM-receptor interactions, asthma, and antigen processing and presentation pathways. CONCLUSIONS: Several DNA regions showed DNA methylation altered by Der p specific immunotherapy, indicating desensitization-associated methylomes. Genes belonging to these SIT-altered pathways may represent therapeutic targets for better clinical management of asthma.


Subject(s)
Antigens, Dermatophagoides/therapeutic use , Arthropod Proteins/therapeutic use , Asthma/therapy , Cysteine Endopeptidases/therapeutic use , DNA Methylation/genetics , Desensitization, Immunologic/methods , Leukocytes, Mononuclear/cytology , Animals , Asthma/immunology , Cytokines/genetics , HSP90 Heat-Shock Proteins/genetics , Heparan Sulfate Proteoglycans/genetics , Humans , Leukocytes, Mononuclear/immunology , Proto-Oncogene Proteins c-bcl-6/genetics , Pyroglyphidae/immunology , Real-Time Polymerase Chain Reaction
16.
Hum Cell ; 33(4): 990-1005, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32617892

ABSTRACT

Orchestrated control of multiple overlapping and sequential processes is required for the maintenance of epidermal homeostasis and the response to and recovery from a variety of skin insults. Previous studies indicate that membrane-associated serine protease matriptase and prostasin play essential roles in epidermal development, differentiation, and barrier formation. The control of proteolysis is a highly regulated process, which depends not only on gene expression but also on zymogen activation and the balance between protease and protease inhibitor. Subcellular localization can affect the accessibility of protease inhibitors to proteases and, thus, also represents an integral component of the control of proteolysis. To understand how membrane-associated proteolysis is regulated in human skin, these key aspects of matriptase and prostasin were determined in normal and injured human skin by immunohistochemistry. This staining shows that matriptase is expressed predominantly in the zymogen form at the periphery of basal and spinous keratinocytes, and prostasin appears to be constitutively activated at high levels in polarized organelle-like structures of the granular keratinocytes in the adjacent quiescent skin. The membrane-associated proteolysis appears to be elevated via an increase in matriptase zymogen activation and prostasin protein expression in areas of skin recovering from epidermal insults. There was no noticeable change observed in other regulatory aspects, including the expression and tissue distribution of their cognate inhibitors HAI-1 and HAI-2. This study reveals that the membrane-associated proteolysis may be a critical epidermal mechanism involved in responding to, and recovering from, damage to human skin.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Skin Physiological Phenomena/genetics , Skin/injuries , Wound Healing/genetics , Wound Healing/physiology , Wounds and Injuries/genetics , Wounds and Injuries/metabolism , Cells, Cultured , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Proteinase Inhibitory Proteins, Secretory/genetics , Proteinase Inhibitory Proteins, Secretory/metabolism , Proteolysis , Serine Endopeptidases/physiology , Skin/metabolism
17.
Sensors (Basel) ; 20(9)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380706

ABSTRACT

The most common oral cancer is squamous cell carcinoma (SCC) and its highest occurrence is in the tongue. Almost 30% of patients with one primary head and neck tumor will have a second primary malignancy. In recent studies, two novel plant extracts, andrographolide and cannabidiol (CBD), have been exploited for their anticancer effects. Here, we investigated the cytotoxic effects of these two compounds on SCC-25 cells, a human tongue squamous carcinoma cell line, and compared the outcomes with two chemotherapeutic drugs, cisplatin and fluorouracil. Electric cell substrate impedance sensing (ECIS) system was applied to measure frequency- and time-dependent impedance of SCC-25 cell-covered electrodes and to further assess subtle changes in cell morphology and micromotion in response to different concentrations (0, 10, 30, 100, and 300 µM) of these compounds. AlamarBlue and Annexin V/7-AAD binding assays were used to measure the concentration dependent changes in viability and apoptosis of SCC-25 cells. Our results demonstrate that 24 hours after exposure to 30 µM CBD can significantly decrease the micromotion rate, damage the integrity of cell morphology, reduce cell viability, and induce higher apoptosis in treated SCC-25 cells, while the other three drugs attain similar effects at the concentration of 100 µM or higher. The apoptosis-induced changes in cell morphology and micromotion monitored by ECIS correlate well with biochemical assays. Thus, both frequency- and time-dependent impedance measurements using ECIS can be used to real-time follow cancer cell activities in response to anticancer drugs with different temporal cytotoxicity profiles.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Cisplatin , Mouth Neoplasms , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cisplatin/pharmacology , Electrochemistry , Humans , Tongue
18.
Cancers (Basel) ; 12(5)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357409

ABSTRACT

Accumulating studies have indicated that long non-coding RNAs (lncRNAs) participate in the regulation of cancer stem cells (CSCs), which are crucial in tumor initiation, metastasis, relapse, and therapy resistance. In the current study, RT-PCR analysis was employed to evaluate the expression of LINC00963 in tumor tissues and oral CSCs. Stemness phenotypes and the expression of CSCs markers in oral cancer cells transfected with sh-LINC00963 were examined. Our results showed that the expression of the lncRNA LINC00963 was up-regulated in oral cancer tissues and CSCs. We found that the downregulation of LINC00963 inhibited CSC hallmarks, such as migration, invasion and colony formation capacity. Moreover, suppression of LINC00963 reduced the activity of stemness marker ALDH1, the percentage of self-renewal, chemoresistance and the expression of multidrug-resistance transporter ABCB5. Most importantly, we demonstrated that knockdown of LINC00963 decreased self-renewal, invasion and colony formation ability via ABCB5. Analysis of TCGA (the Cancer Genome Atlas) datasets suggested that the level of LINC00963 was positively correlated with the expression of the cancer stemness markers (Sox2 and CD44) and drug resistance markers (ABCG2 and ABCB5). Altogether, our results showed that suppression of LINC00963 may be beneficial to inhibit chemoresistance and cancer relapse in oral cancer patients.

19.
Cancers (Basel) ; 12(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046125

ABSTRACT

Cancer cells have been characterized with alkaline intracellular pH (pHi) values (≥7.2) to enable cancer proliferation, migration, and progression. The aim of the present study was to explore the concentration-dependent effects of Andrographolide, an active diterpenoid compound of herb Andrographis paniculata, on Na+/H+ exchanger isoform 1 (NHE1), cellular migration and apoptosis in human cervical cancer cells (HeLa). The pHi was detected by microspectrofluorometry method, and intracellular acidification was induced by NH4Cl prepulse technique. Viability and protein expression were determined by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Western blot, respectively. Human normal endocervical cells (End1), ectocervical cells (Ect1), and HeLa were bought commercially. The resting pHi value of HeLa (≈7.47) was significantly higher than that of End1 and Ect1 (≈7.30), and shifted from alkaline to acidic following acid/base impacts. In HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid | N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) -buffered superfusate, NHE1 and V-ATPase co-existed functionally for acid extrusion in HeLa, while only NHE1 existed functionally in End/Ect1. Andrographolide (3-1000 µM) concentration-dependently inhibited NHE1 activity. Cell-migration and expressions of NHE1, V-ATPase, PARP (poly-ADP-ribose-polymerase), pro-Caspase-3, and Bcl-2 were significantly reduced by pretreating with Andrographolide (≥100 µM) for 24-48 h in HeLa. Andrographolide inhibited cell viability of End1-cells/Ect1 and HeLa (≥100 and ≥30 µM, respectively). The present findings implicate the promising clinical applications of Andrographolide on cervical cancer treatment.

20.
J Autoimmun ; 107: 102362, 2020 02.
Article in English | MEDLINE | ID: mdl-31787479

ABSTRACT

Dendritic cells (DCs) play key roles in regulating T cell proliferation and differentiation, and epigenetic modification involves in this process. In the periphery, programmed death ligand-1 (PD-L1) expressed on antigen-presenting cells interacts with programmed death-1 (PD-1) on T cells to negatively regulate T cell responses. In this study, we investigate whether DNA demethylation in DCs, downmodulates CD4+ T cell activation, to halt progression of experimental autoimmune encephalomyelitis (EAE). These results showed that during the development of bone marrow-derived DCs (BMDCs), DNA hypomethylation by 0.1 µM and 1 µM 5-aza-2'-deoxycytidine (5-aza) upregulated PD-L1, but not CD40, CD80, or CD86, with surprising downregulation of PD-L2. In co-culture, 5-aza-treated BMDCs, as well as CD11c+ cells from 5-aza-treated EAE mice, inhibited EAE CD4+ T cell proliferation and cytokine secretion. Additionally, in vivo 5-aza pretreatment arrested disease progression, inflammatory cell infiltration, and CNS demyelination, in EAE mice. Compared to DCs from vehicle control-treated EAE rodents, DCs from 5-aza-treated EAE mice upregulated PD-L1, in correlation with hypomethylation of the Cd274 promoter. Furthermore, antibody-mediated blockage of PD-L1 rescued EAE progression from 5-aza treatment, in vivo, while also disinhibiting EAE CD4+ T cell proliferation, by 5-aza-treated DCs, in vitro. Consequently, we conclude that PD-L1 is upregulated via DNA hypomethylation in DCs, resulting in downregulation of autoimmune effector T cell functions, thereby halting progression of EAE.


Subject(s)
B7-H1 Antigen/genetics , DNA Demethylation , Dendritic Cells/immunology , Dendritic Cells/metabolism , Encephalomyelitis, Autoimmune, Experimental/etiology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , B7-H1 Antigen/metabolism , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Inflammation Mediators/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...