Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 627(8003): 347-357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374256

ABSTRACT

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Progression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Adipocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/classification , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Endothelial Cells/metabolism , Enteroendocrine Cells , Epigenomics , Genetic Predisposition to Disease/genetics , Islets of Langerhans/metabolism , Multifactorial Inheritance/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/genetics , Single-Cell Analysis
2.
medRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034649

ABSTRACT

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

3.
Circulation ; 147(12): 942-955, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36802703

ABSTRACT

BACKGROUND: Calcific aortic stenosis (CAS) is the most common valvular heart disease in older adults and has no effective preventive therapies. Genome-wide association studies (GWAS) can identify genes influencing disease and may help prioritize therapeutic targets for CAS. METHODS: We performed a GWAS and gene association study of 14 451 patients with CAS and 398 544 controls in the Million Veteran Program. Replication was performed in the Million Veteran Program, Penn Medicine Biobank, Mass General Brigham Biobank, BioVU, and BioMe, totaling 12 889 cases and 348 094 controls. Causal genes were prioritized from genome-wide significant variants using polygenic priority score gene localization, expression quantitative trait locus colocalization, and nearest gene methods. CAS genetic architecture was compared with that of atherosclerotic cardiovascular disease. Causal inference for cardiometabolic biomarkers in CAS was performed using Mendelian randomization and genome-wide significant loci were characterized further through phenome-wide association study. RESULTS: We identified 23 genome-wide significant lead variants in our GWAS representing 17 unique genomic regions. Of the 23 lead variants, 14 were significant in replication, representing 11 unique genomic regions. Five replicated genomic regions were previously known risk loci for CAS (PALMD, TEX41, IL6, LPA, FADS) and 6 were novel (CEP85L, FTO, SLMAP, CELSR2, MECOM, CDAN1). Two novel lead variants were associated in non-White individuals (P<0.05): rs12740374 (CELSR2) in Black and Hispanic individuals and rs1522387 (SLMAP) in Black individuals. Of the 14 replicated lead variants, only 2 (rs10455872 [LPA], rs12740374 [CELSR2]) were also significant in atherosclerotic cardiovascular disease GWAS. In Mendelian randomization, lipoprotein(a) and low-density lipoprotein cholesterol were both associated with CAS, but the association between low-density lipoprotein cholesterol and CAS was attenuated when adjusting for lipoprotein(a). Phenome-wide association study highlighted varying degrees of pleiotropy, including between CAS and obesity at the FTO locus. However, the FTO locus remained associated with CAS after adjusting for body mass index and maintained a significant independent effect on CAS in mediation analysis. CONCLUSIONS: We performed a multiancestry GWAS in CAS and identified 6 novel genomic regions in the disease. Secondary analyses highlighted the roles of lipid metabolism, inflammation, cellular senescence, and adiposity in the pathobiology of CAS and clarified the shared and differential genetic architectures of CAS with atherosclerotic cardiovascular diseases.


Subject(s)
Aortic Valve Stenosis , Veterans , Humans , Aged , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , Aortic Valve Stenosis/genetics , Obesity/genetics , Transcription Factors/genetics , Lipoprotein(a)/genetics , Lipoproteins, LDL , Cholesterol , Polymorphism, Single Nucleotide , Glycoproteins/genetics , Nuclear Proteins/genetics
4.
J Clin Pathol ; 75(1): 10-17, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33148628

ABSTRACT

AIMS: Breast neuroendocrine tumours (NETs) constitute a rare histologic subtype of oestrogen receptor (ER)-positive breast cancer, and their definition according to the WHO classification was revised in 2019. Breast NETs display histologic and transcriptomic similarities with mucinous breast carcinomas (MuBCs). Here, we sought to compare the repertoire of genetic alterations in breast NETs with MuBCs and NETs from other anatomic origins. METHODS: On histologic review applying the new WHO criteria, 18 breast tumours with neuroendocrine differentiation were reclassified as breast NETs (n=10) or other breast cancers with neuroendocrine differentiation (n=8). We reanalysed targeted sequencing or whole-exome sequencing data of breast NETs (n=10), MuBCs type A (n=12) and type B (n=11). RESULTS: Breast NETs and MuBCs were found to be genetically similar, harbouring a lower frequency of PIK3CA mutations, 1q gains and 16q losses than ER-positive/HER2-negative breast cancers. 3/10 breast NETs harboured the hallmark features of ER-positive disease (ie, PIK3CA mutations and concurrent 1q gains/16q losses). Breast NETs showed an enrichment of oncogenic/likely oncogenic mutations affecting transcription factors compared with common forms of ER-positive breast cancer and with pancreatic and pulmonary NETs. CONCLUSIONS: Breast NETs are heterogeneous and are characterised by an enrichment of mutations in transcription factors and likely constitute a spectrum of entities histologically and genomically related to MuBCs. While most breast NETs are distinct from ER-positive/HER2-negative IDC-NSTs, a subset of breast NETs appears to be genetically similar to common forms of ER-positive breast cancer, suggesting that some breast cancers may acquire neuroendocrine differentiation later in tumour evolution.


Subject(s)
Adenocarcinoma, Mucinous/genetics , Breast Neoplasms/genetics , Lung Neoplasms/genetics , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Transcriptome , Adenocarcinoma, Mucinous/pathology , Breast/pathology , Breast Neoplasms/pathology , Chromosome Aberrations , Female , Genomics , Humans , Lung Neoplasms/pathology , Mutation , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Receptors, Estrogen/genetics , Transcription Factors/genetics , Exome Sequencing
6.
NPJ Breast Cancer ; 6: 53, 2020.
Article in English | MEDLINE | ID: mdl-33083532

ABSTRACT

Histologic special types of breast cancer (BC) account for ~20% of BCs. Large sequencing studies of metastatic BC have focused on invasive ductal carcinomas of no special type (IDC-NSTs). We sought to define the repertoire of somatic genetic alterations of metastatic histologic special types of BC. We reanalyzed targeted capture sequencing data of 309 special types of BC, including metastatic and primary invasive lobular carcinomas (ILCs; n = 132 and n = 127, respectively), mixed mucinous (n = 5 metastatic and n = 14 primary), micropapillary (n = 12 metastatic and n = 8 primary), and metaplastic BCs (n = 6 metastatic and n = 5 primary), and compared metastatic histologic special types of BC to metastatic IDC-NSTs matched according to clinicopathologic characteristics and to primary special type BCs. The genomic profiles of metastatic and primary special types of BC were similar. Important differences, however, were noted: metastatic ILCs harbored a higher frequency of genetic alterations in TP53, ESR1, FAT1, RFWD2, and NF1 than primary ILCs, and in CDH1, PIK3CA, ERBB2, TBX3, NCOR1, and RFWD2 than metastatic IDC-NSTs. Metastatic ILCs displayed a higher mutational burden, and more frequently dominant APOBEC mutational signatures than primary ILCs and matched metastatic IDC-NSTs. ESR1 and NCOR mutations were frequently detected in metastatic mixed mucinous BCs, whereas PIK3CA and TP53 were the most frequently altered genes in metastatic micropapillary and metaplastic BCs, respectively. Taken together, primary and metastatic BCs histologic special types have remarkably similar repertoires of somatic genetic alterations. Metastatic ILCs more frequently harbor APOBEC mutational signatures than primary ILCs and metastatic IDC-NSTs.

7.
Int J Gynecol Cancer ; 30(6): 717-723, 2020 06.
Article in English | MEDLINE | ID: mdl-32376737

ABSTRACT

OBJECTIVE: Despite good prognosis for patients with low-risk endometrial cancer, a small subset of women with low-grade/low-stage endometrial cancer experience disease recurrence and death. The aim of this study was to characterize clinical features and mutational profiles of recurrent, low-grade, non-myoinvasive, 'ultra-low risk' endometrioid endometrial adenocarcinomas. METHODS: We retrospectively identified patients with International Federation of Gynecology and Obstetrics (FIGO) stage IA endometrioid endometrial cancers who underwent primary surgery at our institution, between January 2009 and February 2017, with follow-up of ≥12 months. 'Ultra-low risk' was defined as FIGO tumor grade 1, non-myoinvasive, and lacking lymphovascular space invasion. Tumor-normal profiling using massively parallel sequencing targeting 468 genes was performed. Microsatellite instability was assessed using MSIsensor. DNA mismatch repair (MMR) protein proficiency was determined by immunohistochemistry. RESULTS: A total of 486 patients with ultra-low risk endometrioid endometrial cancers were identified: 14 (2.9%) of 486 patients developed a recurrence. Median follow-up for non-recurrent endometrioid endometrial cancers: 34 (range 12-116) months; for recurrent endometrioid endometrial cancers: 50.5 (range 20-116) months. Patients with recurrent disease were older, had lower body mass index, and were most commonly non-White (p=0.025, p<0.001, and p<0.001, respectively). Other clinical characteristics did not differ. MMR immunohistochemistry was obtained for 211 (43%) tumors: 158 (75%) MMR-proficient and 53 (25%) MMR-deficient. Primary tumors of 9 recurrent and 27 non-recurrent endometrioid endometrial cancers underwent mutational profiling. Most were microsatellite stable (6/9, 67% recurrent; 25/27, 93% non-recurrent). Recurrent PTEN and PIK3CA mutations were present in both groups. Exon 3 CTNNB1 hotspot mutations were found in 4/9 (44%) recurrent and 8/27 (30%) non-recurrent (p=0.44). CONCLUSIONS: Patients diagnosed with ultra-low risk endometrioid endometrial cancers have an overall excellent prognosis. However, in our study, 2.9% of patients with no identifiable clinical or pathologic risk factors developed recurrence. Further work is warranted to elucidate the mechanism for recurrence in this population.


Subject(s)
Carcinoma, Endometrioid/genetics , DNA Repair Enzymes/genetics , Endometrial Neoplasms/genetics , Neoplasm Recurrence, Local/epidemiology , Adult , Aged , Aged, 80 and over , Carcinoma, Endometrioid/epidemiology , Endometrial Neoplasms/epidemiology , Female , Humans , Microsatellite Instability , Middle Aged , New York City/epidemiology , Retrospective Studies
9.
NPJ Breast Cancer ; 5: 23, 2019.
Article in English | MEDLINE | ID: mdl-31428676

ABSTRACT

Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.

10.
Histopathology ; 75(6): 931-937, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31361912

ABSTRACT

AIMS: Acinic cell carcinoma (ACC) of the breast is a rare histological form of triple-negative breast cancer (TNBC). Despite its unique histology, targeted sequencing analysis has failed to identify recurrent genetic alterations other than those found in common forms of TNBC. Here we subjected three breast ACCs to whole-exome and RNA sequencing to determine whether they would harbour a pathognomonic genetic alteration. METHODS AND RESULTS: DNA and RNA samples from three breast ACCs were subjected to whole-exome sequencing and RNA-sequencing, respectively. Somatic mutations, copy number alterations, mutational signatures and fusion genes were determined with state-of-the-art bioinformatics methods. Our analyses revealed TP53 hotspot mutations associated with loss of heterozygosity of the wild-type allele in two cases. Mutations affecting homologous recombination DNA repair-related genes were found in two cases, and an MLH1 pathogenic germline variant was found in one case. In addition, copy number analysis revealed the presence of a somatic BRCA1 homozygous deletion and focal amplification of 12q14.3-12q21.1, encompassing MDM2, HMGA2, FRS2, and PTPRB. No oncogenic in-frame fusion transcript was identified in the three breast ACCs analysed. CONCLUSIONS: No pathognomonic genetic alterations were detected in the breast ACCs analysed. These tumours have somatic genetic alterations similar to those of common forms of TNBC, and may show homologous recombination deficiency or microsatellite instability. These findings provide further insights into why breast ACCs, which are usually clinically indolent, may evolve into or in parallel with high-grade TNBC.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carcinoma, Acinar Cell/genetics , DNA Copy Number Variations , Triple Negative Breast Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Breast/pathology , Breast Neoplasms/pathology , Carcinoma, Acinar Cell/pathology , DNA Damage , DNA Mutational Analysis , DNA Repair , Female , High-Throughput Nucleotide Sequencing , Humans , Mutation , Sequence Analysis, RNA , Triple Negative Breast Neoplasms/pathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...