Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(5): 4404-4413, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36825770

ABSTRACT

Noble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS2). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS2 flakes by the solution process without using reducing agents. The MoS2 flakes showed drastic selectivity changes after surface decoration and distinguished ammonia, hydrogen, and ethanol gases clearly, which were not observed in general 3D metal oxide nanostructures. The role of noble metal nanoparticle decoration on the selectivity change is investigated by first-principles density functional theory (DFT) calculations. While the H2 sensitivity shows a similar tendency with the calculated binding energy, that of NH3 is strongly related to the binding site deactivation due to preferred noble metal particle decoration at the MoS2 edge. This finding is a specific phenomenon which originates from the distinguished structure of the 2D material, with highly active edge sites. We believe that our study will provide the fundamental comprehension for the strategy to devise the highly efficient sensor array based on 2D materials.

2.
Langmuir ; 38(30): 9064-9072, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35857887

ABSTRACT

The extension of green and sustainable materials in the preparation of heterogeneous catalysts for organic transformations has increased over the past few decades. Because of their unique and intriguing physical and chemical properties, two-dimensional (2D) nanostructured materials have attracted widespread attention and have been used in a variety of applications, such as catalysis, electronics, and energy storage. A promising pathway to enhance the performance of 2D nanomaterials is their coupling with other functional materials to form heterogeneous or hybrid structures. Herein, we discuss the use of 2D-based nanostructured catalysts for enhancing organic transformations and highlight selected examples to demonstrate the synthesis, advantages, challenges, efficiency, and reusability of the introduced heterogeneous catalysts for cross-coupling and reduction reactions.

3.
Small ; 18(11): e2105611, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35064754

ABSTRACT

Numerous studies have explored new materials for electrocatalysts, but it is difficult to discover materials that surpass the catalytic activity of current commercially available noble metal electrocatalysts. In contrast to conventional transition metal alloys, high-entropy alloys (HEAs) have immense potential to maximize their catalytic properties because of their high stability and compositional diversity as oxygen evolution reactions (OERs). This work presents medium-entropy alloys (MEAs) as OER electrocatalysts to simultaneously satisfy the requirement of high catalytic activity and long-term stability. The surface of MEA electrocatalyst is tailored to suit the OER via anodizing and cyclic voltammetry activation methods. Optimized electrical properties and hydrophilicity of the surface enable an extremely low overpotential of 187 mV for achieving the current density of 10 mA cm-2 alkaline media. Furthermore, a combined photovoltaic-electrochemical system with MEA electrocatalyst and a perovskite/Si tandem solar cell exhibits a solar-to-hydrogen conversion efficiency of 20.6% for an unassisted hydrogen generation system. These results present a new pathway for designing sustainable high efficiency water splitting cells.

4.
ACS Appl Mater Interfaces ; 14(6): 7788-7795, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35040620

ABSTRACT

Formation of type II heterojunctions is a promising strategy to enhance the photoelectrochemical performance of water-splitting photoanodes, which has been tremendously studied. However, there have been few studies focusing on the formation of type II heterojunctions depending on the thickness of the overlayer. Here, enhanced photoelectrochemical activities of a Fe2O3 film deposited-BiVO4/WO3 heterostructure with different thicknesses of the Fe2O3 layer have been investigated. The Fe2O3 (10 nm)/BiVO4/WO3 heterojunction photoanode shows a much higher photocurrent density compared to the Fe2O3 (100 nm)/BiVO4/WO3 photoanode. The Fe2O3 (10 nm)/BiVO4/WO3 trilayer heterojunction anodes have sequential type II junctions, while a thick Fe2O3 overlayer forms an inverse type II junction between Fe2O3 and BiVO4. Furthermore, the incident-photon-to-current efficiency measured under back-illumination is higher than those measured under front-illumination, demonstrating the importance of the illumination sequence for light absorption and charge transfer and transport. This study shows that the thickness of the oxide overlayer influences the energy band alignment and can be a strategy to improve solar water splitting performance. Based on our findings, we propose a photoanode design strategy for efficient photoelectrochemical water splitting.

5.
Small Methods ; 5(2): e2000755, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34927882

ABSTRACT

In a polycrystalline material, the grain boundaries (GBs) can be effective active sites for catalytic reactions by providing an electrodynamically favorable surface. Previous studies have shown that grain boundary density is related to the catalytic activity of the carbon dioxide reduction reaction, but there is still no convincing evidence that the GBs provide surfaces with enhanced activity for oxygen evolution reaction (OER). Combination of various electrochemical measurements and chemical analysis reveals the GB density at surface of NiFe electrocatalysts directly affects the overall OER. In situ electrochemical microscopy vividly shows that the OER occurs mainly at the GB during overall reaction. It is observed that the reaction determining steps are altered by grain boundary densities and the meaningful work function difference between the inside of grain and GBs exists. High-resolution transmission electron microscopy shows that extremely high index planes are exposed at the GBs, enhancing the oxygen evolution activity. The specific nature of GBs and its effects on the OER demonstrated in this study can be applied to the various polycrystalline electrocatalysts.

6.
Small ; 17(39): e2103457, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34453489

ABSTRACT

To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge-exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge-rich MoS2 nanoplates are elaborately synthesized and deposited on p-Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti-reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p-Si and catalyst layers facilitates the transport of photogenerated electrons under steady-state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p-Si photocathode exhibits significantly improved photoelectrochemical-hydrogen evolution reaction (PEC-HER) performance in alkaline media with a high photocurrent density of 10 mA cm-2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth-abundant Fe60 (NiCo)30 Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm-2 corresponding to 6.6% solar-to-hydrogen efficiency, which is the highest among p-Si photocathodes.

7.
ACS Appl Mater Interfaces ; 13(12): 14291-14301, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33734677

ABSTRACT

To fabricate high efficiency photoanodes for water oxidation, it is highly required to engineer their nanoporous architecture and interface to improve the charge separation and transport efficiency. By focusing on this aspect, we developed hierarchical nanoporous BiVO4 (BV) from solution processed two-dimensional BiOI (BI) crystals. The orientation of the BI crystals was controlled by changing the solvent volume ratios of ethylene glycol (EG) to ethanol (ET), which resulted in different hierarchical and planar BV morphologies through a chemical treatment followed by thermal heating. The morphology with optimal particle dimension, connectivity, and porosity can offer a highly enhanced electrochemically active surface area (ECSA). The hierarchical BV owning a maximum ECSA showed the best photoelectrochemical (PEC) performance in terms of the highest photocurrent density and charge separation efficiency. However, to further improve the performance of the electrode, conformal and ultrathin SnO2 underlayers were deposited by a powerful atomic layer deposition technique at the interface to effectively block the defect density, which significantly improved the photocurrents as high as 3.25 mA/cm2 for sulfite oxidation and 2.55 mA/cm2 for water oxidation at 0.6 V versus the reversible hydrogen electrode (RHE). The electrode possessed record charge separation efficiency of 97.1% and charge transfer efficiency of 90.1% at 1.23 VRHE among to-date reported BiVO4-based photoanodes for water oxidation. Furthermore, a maximum applied bias photon-to-current efficiency (ABPE) of 1.61% was found at a potential as low as 0.6 VRHE, which is highly promising to make a tandem cell. These results indicate that the construction of the hierarchical nanoporous photoanode with an enhanced ECSA and its proper interface engineering can significantly improve the PEC performance.

8.
Exploration (Beijing) ; 1(3): 20210012, 2021 Dec.
Article in English | MEDLINE | ID: mdl-37323687

ABSTRACT

Electrodeposition with a long history has been considered one of the important synthesis techniques for applying various applications. It is a feasible route for fabricating nanostructures using diverse materials due to its simplicity, cost-effectiveness, flexibility, and ease of reaction control. Herein, we mainly focus on the nanoscale electrodeposition with respect to dimension control and three-dimensional (3D) conformality. The principles of electrodeposition, dimensional design of materials, and uniform coatings on various substrates are presented. We introduce that manipulating synthesis parameters such as precursors, applied current/voltage, and additives affect the synthesis reaction, resulting in not only dimensional control of materials from three-dimensional structures to zero-dimensional atomic-level but also conformal coatings on complicated substrates. Various cases regarding morphology control of metal (hydro)oxides, metals, and metal-organic frameworks according to electrodeposition conditions are summarized. Lastly, recent studies of applications such as batteries, photoelectrodes, and electrocatalysts using electrodeposited materials are summarized. This review represents significant advances in the nanoscale design of materials through methodological approaches, which are highly attractive from both academic and commercial aspects.

9.
Adv Mater ; 33(2): e2004827, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33215741

ABSTRACT

2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. Herein, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials.

10.
Nano Lett ; 20(11): 8040-8045, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33135899

ABSTRACT

As the BO6 octahedral structure in perovskite oxide is strongly linked with electronic behavior, it is actively studied for various fields such as metal-insulator transition, superconductivity, and so on. However, the research about the relationship between water-splitting activity and BO6 structure is largely lacking. Here, we report the oxygen evolution reaction (OER) of LaNiO3 (LNO) by changing the NiO6 structure using compositional change and strain. The 5 atom % La deficiency in LNO resulted in an increase of the Ni-O-Ni bond angle and an expansion of bandwidth, enhancing the charge transfer ability. In-plane compressive strain derives the higher dz2 orbital occupancy, leading to suitable metal-oxygen bond strength for OER. Because of the synergistic effect of A-site deficiency and compressive strain, the overpotential (η) of compressively strained L0.95NO film is reduced to 130 mV at j = 30 µA/cm2 compared with nonstrained LNO (η = 280 mV), indicating a significant enhancement in OER.

11.
ACS Appl Mater Interfaces ; 12(43): 48486-48494, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33078614

ABSTRACT

Extended and oriented rutile nanowires (NWs) hold great promise for numerous applications because of their various tunable physicochemical properties in air and/or solution media, but their direct synthesis on a wide range of conducting substrates remains a significant challenge. Their device performance is governed by relevant NW geometries that cannot be fully controlled to date by varying bulk synthetic conditions. Herein, orientation engineering of rutile SnO2 NWs on a variety of conducting substrates by atomic layer deposition (ALD) seeding has been investigated. The seeded growth controls the nucleation event of the NW, and thicknesses and crystallographic properties of seed layers are the key parameters toward tuning the NW characteristics. The seed layers on carbon cloth produce NWs with highly enhanced electrochemically active surface area, which would show efficient electrochemical CO2 reduction. In addition, the hierarchical architecture resulted from the seeded growth of NWs on SnO2 nanosheets allows thin layers of BiVO4, forming a heterojunction photoanode, which shows a record charge separation efficiency of 96.6% and a charge-transfer efficiency of 90.2% at 1.23 V versus the reversible hydrogen electrode among, to date, the reported BiVO4-based photoanodes for water oxidation. Our study illustrates that such a versatile interfacial engineering effort by the ALD technique would be promising for further wide range of practical applications.

12.
Small ; 16(41): e2003225, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32945139

ABSTRACT

Organometallic and all-inorganic halide perovskites (HPs) have recently emerged as promising candidate materials for resistive switching (RS) nonvolatile memory due to their current-voltage hysteresis caused by fast ion migration. Lead-free and all-inorganic HPs have been researched for non-toxic and environmentally friendly RS memory devices. However, only HP-based devices with electrochemically active top electrode (TE) exhibit ultra-low operating voltages and high on/off ratio RS properties. The active TE easily reacts to halide ions in HP films, and the devices have a low device durability. Herein, RS memory devices based on an air-stable lead-free all-inorganic dual-phase HP (AgBi2 I7 -Cs3 Bi2 I9 ) are successfully fabricated with inert metal electrodes. The devices with Au TE show filamentary RS behavior by conducting-bridge involving Ag cations in HPs with ultra-low operating voltages (<0.15 V), high on/off ratio (>107 ), multilevel data storage, and long retention times (>5 × 104 s). The use of a closed-loop pulse switching method improves reversible RS properties up to 103 cycles with high on/off ratio above 106 . With an extremely small bending radius of 1 mm, the devices are operable with reasonable RS characteristics. This work provides a promising material strategy for lead-free all-inorganic HP-based nonvolatile memory devices for practical applications.

13.
ACS Appl Mater Interfaces ; 11(37): 33835-33843, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31436403

ABSTRACT

Various noble metal-free electrocatalysts have been explored to enhance the overall water splitting efficiency. Ni-based compounds have attracted substantial attention for achieving efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts. Here, we show superior electrocatalysts based on NiFe alloy electroformed by a roll-to-roll process. NiFe (oxy)hydroxide synthesized by an anodization method for the OER catalyst shows an overpotential of 250 mV at 10 mA cm-2, which is dramatically smaller than that of bare NiFe alloy with an overpotential of 380 mV at 10 mA cm-2. Electrodeposited NiMo films for the HER catalyst also exhibit a small overpotential of 100 mV at 10 mA cm-2 compared with that of bare NiFe alloy (550 mV at 10 mA cm-2). A combined spectroscopic and electrochemical analysis reveals a clear relationship between the surface chemistry of NiFe (oxy)hydroxide and the water splitting properties. These outstanding fully solution-processed catalysts facilitate superb overall water splitting properties due to enlarged active surfaces and highly active catalytic properties. We combined a solution-processed monolithic perovskite/Si tandem solar cell with MAPb(I0.85Br0.15)3 for the direct conversion of solar energy into hydrogen energy, leading to the high solar-to-hydrogen efficiency of 17.52%. Based on the cost-effective solution processes, our photovoltaic-electrocatalysis (PV-EC) system has advantages over latest high-performance solar water splitting systems.

14.
ACS Appl Mater Interfaces ; 11(22): 20004-20012, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31083922

ABSTRACT

Tungsten oxide (WO3) and bismuth vanadate (BiVO4) are one of the most attractive combinations to construct an efficient heterojunction for photoelectrochemical (PEC) applications. Here, we report an all-solution-processed WO3/BiVO4 heteronanostructure photoanode with highly enhanced photoactivity and stability for sustainable energy production. The vertically aligned WO3 nanorods were synthesized on a fluorine-doped tin oxide/glass substrate by the hydrothermal method without a seed layer and BiVO4 was deposited by pulsed electrodeposition for conformal coating. Owing to the long diffusion lengths of charge carriers in the WO3 nanorods, the ability to absorb the wider range of wavelengths, and appropriate band-edge positions of the WO3/BiVO4 heterojunction for spontaneous PEC reaction, the optimum WO3/BiVO4 photoanode has a photocurrent density of 4.15 mA/cm2 at 1.23 V versus RHE and an incident-photon-to-current efficiency of 75.9% at 430 nm under front illumination, which are a double and quadruple those of pristine WO3 nanorod arrays, respectively. Our work suggests an environment-friendly and low-cost all-solution process route to synthesize high-quality photoelectrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...