Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 12506, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28970501

ABSTRACT

The retention of electrical performance under the combined conditions of mechanical strain and an electrical current is essential for flexible electronics. Here, we report that even below the critical current density required for electromigration, the electrical current can significantly deteriorate the electromechanical performance of metal film/polymer substrate systems. This leads to a loss of stretchability, and this effect becomes more severe with increasing strain as well as increasing current. The local increase of electrical resistance in the metal film caused by damage, such as localized deformations, cracks, etc., locally raises the temperature of the test sample via Joule heating. This weakens the deformation resistance of the polymer substrate, accelerating the necking instability, and consequently leading to a rapid loss of electrical conductivity with strain. To minimize such a current-induced deterioration of the polymer-supported metal films, we develop and demonstrate the feasibility of two methods that enhance the deformation resistance of the polymer substrate at elevated temperatures: increasing the thickness of the polymer substrate, and utilizing a polymer substrate with a high glass transition temperature.

2.
Nanoscale ; 8(9): 4961-8, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26540317

ABSTRACT

Oxide materials have recently attracted much research attention for applications in flexible and stretchable electronics due to their excellent electrical properties and their compatibility with established silicon semiconductor processes. Their widespread uptake has been hindered, however, by the intrinsic brittleness and low stretchability. Here we investigate the use of a graphene meta-interface to enhance the electromechanical stretchability of fragile oxide layers. Electromechanical tensile tests of indium tin oxide (ITO) layers on polymer substrates were carried out with in situ observations using an optical microscope. It was found that the graphene meta-interface reduced the strain transfer between the ITO layer and the substrate, and this behavior was well described using a shear lag model. The graphene meta-interface provides a novel pathway for realizing flexible and stretchable electronic applications based on oxide layers.

3.
Nanoscale ; 6(11): 6057-64, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24781278

ABSTRACT

The stretchability of CVD graphene with a large area is much lower than that of mechanically exfoliated pristine graphene owing to the intrinsic and extrinsic defects induced during its synthesis, etch-out of the catalytic metal, and the transfer processes. This low stretchability is the main obstacle for commercial application of CVD graphene in the field of flexible and stretchable electronics. In this study, artificially layered CVD graphene is suggested as a promising candidate for a stretchable transparent electrode. In contrast to single-layer graphene (SLG), multi-layer graphene has excellent electromechanical stretchability owing to the strain relaxation facilitated by sliding among the graphene layers. Macroscopic and microscopic electromechanical tensile tests were performed to understand the key mechanism for the improved stretchability, and crack generation and evolution were systematically investigated for their dependence on the number of CVD graphene layers during tensile deformation using lateral force microscopy. The stretchability of double-layer graphene (DLG) is much larger than that of SLG and is similar to that of triple-layer graphene (TLG). Considering the transmittance and the cost of transfer, DLG can be regarded as a suitable candidate for stretchable transparent electrodes.

4.
Nanotechnology ; 24(8): 085701, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23376972

ABSTRACT

Metal nanoparticle solutions are widely used for the fabrication of printed electronic devices. The mechanical properties of the solution-processed metal nanoparticle thin films are very important for the robust and reliable operation of printed electronic devices. In this paper, we report the tensile characteristics of silver nanoparticle (Ag NP) thin films on flexible polymer substrates by observing the microstructures and measuring the electrical resistance under tensile strain. The effects of the annealing temperatures and periods of Ag NP thin films on their failure strains are explained with a microstructural investigation. The maximum failure strain for Ag NP thin film was 6.6% after initial sintering at 150 °C for 30 min. Thermal annealing at higher temperatures for longer periods resulted in a reduction of the maximum failure strain, presumably due to higher porosity and larger pore size. We also found that solution-processed Ag NP thin films have lower failure strains than those of electron beam evaporated Ag thin films due to their highly porous film morphologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...