Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Tissue Eng Regen Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955906

ABSTRACT

BACKGROUND: Tissue clearing enables deep imaging in various tissues by increasing the transparency of tissues, but there were limitations of immunostaining of the large-volume tissues such as the whole brain. METHODS: Here, we cleared and immune-stained whole mouse brain tissues using a novel clearing technique termed high-speed clearing and high-resolution staining (HCHS). We observed neural structures within the cleared brains using both a confocal microscope and a light-sheet fluorescence microscope (LSFM). The reconstructed 3D images were analyzed using a computational reconstruction algorithm. RESULTS: Various neural structures were well observed in three-dimensional (3D) images of the cleared brains from Gad-green fluorescent protein (GFP) mice and Thy 1-yellow fluorescent protein (YFP) mice. The intrinsic fluorescence signals of both transgenic mice were preserved after HCHS. In addition, large-scale 3D imaging of brains, immune-stained by the HCHS method using a mild detergent-based solution, allowed for the global topological analysis of several neuronal markers such as c-Fos, neuronal nuclear protein (NeuN), Microtubule-associated protein 2 (Map2), Tuj1, glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) in various anatomical regions in the whole mouse brain tissues. Finally, through comparisons with various existing tissue clearing methodologies such as CUBIC, Visikol, and 3DISCO, it was confirmed that the HCHS methodology results in relatively less tissue deformation and higher fluorescence retention. CONCLUSION: In conclusion, the development of 3D imaging based on novel tissue-clearing techniques (HCHS) will enable detailed spatial analysis of neural and vascular networks present within the brain.

2.
Dev Biol ; 513: 3-11, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759942

ABSTRACT

The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.


Subject(s)
Hair Follicle , Nails , Hair Follicle/embryology , Humans , Nails/embryology , Nails/growth & development , Animals , Signal Transduction , Regeneration/physiology
3.
J Invest Dermatol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810955

ABSTRACT

Hair follicle neogenesis (HFN) occurs after large skin excisions in mice, serving as a rare regenerative model in mammalian wound healing. Wound healing typically results in fibrosis in mice and humans. We previously showed that small skin excisions in mice result in scarring devoid of HFN, displaying features of nonregenerative healing, and hedgehog (Hh) activation in the dermis of such wounds can induce HFN. In this study, we sought to verify the role of dermal Wnt/ß-catenin signaling in HFN because this pathway is essential for hair follicle development but is also paradoxically well-characterized in fibrosis of adult wounds. By deletion of ß-catenin in large wound myofibroblasts, we show that Wnt/ß-catenin signaling is required for endogenous mechanisms of HFN. By utilizing a combined mouse model that simultaneously induces deletion of ß-catenin and constitutive activation of Smoothened in myofibroblasts, we also found that ß-catenin is required for Hh-driven dermal papilla formation. Transcriptome analysis confirms that Wnt/ß-catenin and Hh pathways are activated in dermal papilla cells. Our results indicate that Wnt-active fibrotic status may also create a permissive state for the regenerative function of Hh, suggesting that activation of both Wnt and Hh pathways in skin wound fibroblasts must be ensured in future strategies to promote HFN.

4.
Cells ; 12(4)2023 02 09.
Article in English | MEDLINE | ID: mdl-36831222

ABSTRACT

The number of people suffering from hair loss is increasing, and hair loss occurs not only in older men but also in women and young people. Prostaglandin D2 (PGD2) is a well-known alopecia inducer. However, the mechanism by which PGD2 induces alopecia is poorly understood. In this study, we characterized CXXC5, a negative regulator of the Wnt/ß-catenin pathway, as a mediator for hair loss by PGD2. The hair loss by PGD2 was restored by Cxxc5 knock-out or treatment of protein transduction domain-Dishevelled binding motif (PTD-DBM), a peptide activating the Wnt/ß-catenin pathway via interference with the Dishevelled (Dvl) binding function of CXXC5. In addition, suppression of neogenic hair growth by PGD2 was also overcome by PTD-DBM treatment or Cxxc5 knock-out as shown by the wound-induced hair neogenesis (WIHN) model. Moreover, we found that CXXC5 also mediates DHT-induced hair loss via PGD2. DHT-induced hair loss was alleviated by inhibition of both GSK-3ß and CXXC5 functions. Overall, CXXC5 mediates the hair loss by the DHT-PGD2 axis through suppression of Wnt/ß-catenin signaling.


Subject(s)
Preimplantation Diagnosis , beta Catenin , Adolescent , Aged , Female , Humans , Male , Alopecia , beta Catenin/metabolism , DNA-Binding Proteins , Glycogen Synthase Kinase 3 beta , Hair/metabolism , Transcription Factors
5.
Adv Healthc Mater ; 12(18): e2203094, 2023 07.
Article in English | MEDLINE | ID: mdl-36854308

ABSTRACT

Regenerative wound healing involves the scarless wound healing as observed in fetal skin. Multiple features of regenerative wound healing have been well studied; however, the practical application of pro-regenerative materials to recapitulate the regenerative wound healing in adult skins has not yet been achieved. In this study, the authors identified that their novel pro-regenerative material, pyrogallol-functionalized hyaluronic acid (HA-PG) patches in combination with protein transduction domain-fused Dishevelled (Dvl)-binding motif (PTD-DBM), a peptide inhibiting the CXXC-type zinc finger protein 5 (CXXC5)-Dvl interaction, promoted regenerative wound healing in mice. The HA-PG patches loaded with this competitor peptide and valproic acid (VPA), a glycogen synthase kinase 3ß (GSK3ß) inhibitor, significantly inhibited scar formation during wound healing. The HA-PG patches with PTD-DBM and/or VPA inhibit the expression of differentiated cell markers such as α-smooth muscle actin (α-SMA) while inducing the expression of stem cell markers such as CD105 and Nestin. Moreover, Collagen III, an important factor for regenerative healing, is critically induced by the HA-PG patches with PTD-DBM and/or VPA, as also seen in VPA-treated Cxxc5-/- mouse fibroblasts. Overall, these findings suggest that the novel regeneration-promoting material can be utilized as a potential therapeutic agent to promote both wound healing and scar attenuation.


Subject(s)
Cicatrix , Hydrogels , Animals , Mice , Cicatrix/drug therapy , Hydrogels/pharmacology , Wound Healing/physiology , Peptides , Drug Therapy, Combination , DNA-Binding Proteins , Transcription Factors
6.
Pharmaceutics ; 14(12)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36559274

ABSTRACT

Hair follicle stem cells (HFSCs) utilize glycolytic metabolism during their activation and anagen induction. However, the role of pyruvate kinase M2 (PKM2), which catalyzes the final step of glycolysis, in hair regeneration has not been elucidated. In this study, we investigated the expression pattern and activity of PKM2 during the depilation-induced anagen progression in mice. We found that TEPP-46, a selective activator of PKM2, enhanced hair re-growth and proliferation of HFSCs. PKM2 expression was increased via up-regulation of Wnt/ß-catenin signaling, which is involved in hair regeneration. Moreover, a combined treatment with KY19382, a small molecule that activates Wnt/ß-catenin signaling, and TEPP-46 significantly enhanced hair re-growth and wound-induced hair follicle neogenesis (WIHN). These results indicate that simultaneous activation of the PKM2 and Wnt/ß-catenin signaling could be a potential strategy for treating alopecia patients.

7.
Sci Rep ; 12(1): 20669, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450849

ABSTRACT

Obesity has become a major risk factor for developing metabolic diseases, including insulin resistance, type 2 diabetes, and hypertension. Growing pieces of evidence indicate that the Wnt/ß-catenin signaling pathway plays an important role in adipogenesis and obesity. Activation of the Wnt/ß-catenin signaling pathway inhibits adipogenesis by suppressing the differentiation of committed preadipocytes into mature adipocytes. CXXC5 is highly induced with suppression of Wnt/ß-catenin signaling in early adipogenic differentiation. In addition, silencing CXXC5 in vitro increased ß-catenin and decremented the major adipogenic differentiation markers. KY19334, a small molecule that activates the Wnt/ß-catenin pathway via inhibition of CXXC5- Dishevelled (Dvl) protein-protein interaction (PPI), suppressed adipogenic differentiation. Administration of KY19334 ameliorated obesity by 26 ± 1.3% and insulin resistance by 23.45 ± 7.09% and reduced adipocyte hypertrophy by 80.87 ± 5.30% in high-fat diet (HFD)-fed mice. In addition, KY19334 accelerated the browning of adipose tissue and promoted hepatic glucose homeostasis in HFD-fed mice. In conclusion, activation of the Wnt/ß-catenin signaling by inhibiting the interaction of CXXC5 and Dvl by small molecule-mediated interference is a potential therapeutic approach for treating obesity and insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Animals , Adipogenesis , beta Catenin , Obesity/drug therapy , DNA-Binding Proteins/genetics , Transcription Factors/genetics
8.
Exp Mol Med ; 54(9): 1511-1523, 2022 09.
Article in English | MEDLINE | ID: mdl-36114279

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease that results from multiple metabolic disorders. Considering the complexity of the pathogenesis, the identification of a factor mediating the multiple pathogenic phenotypes of NASH will be important for treatment. In this study, we found that CXXC5, a negative feedback regulator of the Wnt/ß-catenin pathway, was overexpressed with suppression of Wnt/ß-catenin signaling and its target genes involved in hepatic metabolism in obese-NASH patients. Cxxc5-/- mice were found to be resistant to NASH pathogenesis with metabolic improvements. KY19334, a small molecule that activates the Wnt/ß-catenin pathway via interference of the CXXC5-Dvl interaction, reversed the overall pathogenic features of NASH as Cxxc5-/- mice. The improvement in NASH by KY19334 is attributed to its regenerative effects through restorative activation of the suppressed Wnt/ß-catenin signaling. Overall, the pronounced metabolic improvements with the stimulation of liver regeneration by interfering with the CXXC5-Dvl interaction provide a therapeutic approach for NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , beta Catenin , Animals , DNA-Binding Proteins/metabolism , Liver/metabolism , Liver Regeneration , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Transcription Factors , Wnt Signaling Pathway/physiology , beta Catenin/genetics , beta Catenin/metabolism
9.
BMB Rep ; 55(11): 559-564, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36016500

ABSTRACT

Diabetes mellitus is one of the most prevalent diseases in modern society. Many complicationssuch as hepatic cirrhosis, neuropathy, cardiac infarction, and so on are associated with diabetes. Although a relationship between diabetes and hair loss has been recently reported, the treatment of diabetic hair loss by Wnt/ß-catenin activators has not been achieved yet. In this study, we found that the depilation-induced anagen phase was delayed in both db/db mice and high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic mice. In diabetic mice, both hair regrowth and wound-induced hair follicle neogenesis (WIHN) were reduced because of suppression of Wnt/ß-catenin signaling and decreased proliferation of hair follicle cells. We identified that KY19382, a small molecule that activates Wnt/ß-catenin signaling, restored the capabilities of regrowth and WIHN in diabetic mice. The Wnt/ß-catenin signaling activator also increased the length of the human hair follicle which was decreased under high glucose culture conditions. Overall, the diabetic condition reduced both hair regrowth and regeneration with suppression of the Wnt/ß-catenin signaling pathway. Consequently, the usage of Wnt/ß-catenin signaling activators could be a potential strategy to treat diabetes-induced alopecia patients. [BMB Reports 2022; 55(11): 559-564].


Subject(s)
Alopecia , Diabetes Mellitus, Experimental , Wnt Signaling Pathway , Animals , Humans , Mice , Alopecia/etiology , Alopecia/metabolism , beta Catenin/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Hair/metabolism , Hair Follicle/metabolism
10.
Clin Transl Med ; 12(4): e742, 2022 04.
Article in English | MEDLINE | ID: mdl-35384342

ABSTRACT

BACKGROUND: Metabolic diseases, including type 2 diabetes, have long been considered incurable, chronic conditions resulting from a variety of pathological conditions in obese patients. Growing evidence suggests the Wnt/ß-catenin pathway is a major pathway in adipose tissue remodelling, pancreatic ß-cell regeneration and energy expenditure through regulation of key metabolic target genes in various tissues. CXXC5-type zinc finger protein 5 (CXXC5) is identified negative feedback regulator of the Wnt/ß-catenin pathway that functions via Dishevelled (Dvl) binding. METHODS: Expression level of CXXC5 was characterised in clinical samples and diabetes-induced mice model. Diabetes-induced mice model was established by using high-fat diet (HFD). HFD-fed mice treated with KY19334, a small molecule inhibiting CXXC5-Dvl protein-protein interaction (PPI), was used to assess the role of CXXC5 in metabolic diseases. RESULTS: Here, we show that CXXC5 is overexpressed with suppression of Wnt/ß-catenin signalling in visceral adipose tissues of patients with obesity-related diabetes. Meanwhile, Cxxc5-/- mice fed an HFD exhibited resistance to metabolic dysregulation. KY19334 restores the lowered Wnt/ß-catenin signalling and reverses metabolic abnormalities as observed in HFD-fed Cxxc5-/- mice. Administration of KY19334 on HFD-fed mice had a long-lasting glucose-controlling effect through remodelling of adipocytes and regeneration of pancreatic ß-cells. CONCLUSION: Overall, the inhibition of CXXC5 function by small molecule-mediated interference of Dvl binding is a potential therapeutic strategy for the treatment of obesity-related diabetes.


Subject(s)
DNA-Binding Proteins , Diabetes Mellitus, Type 2 , Transcription Factors , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Humans , Mice , Mice, Knockout , Obesity/complications , Obesity/drug therapy , Obesity/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Wnt Signaling Pathway
11.
Bioorg Chem ; 121: 105664, 2022 04.
Article in English | MEDLINE | ID: mdl-35176556

ABSTRACT

Glycogen synthase kinase-3ß (GSK-3ß) appears to be ordinarily expressed, and functionally redundant in Wnt/ß-catenin signaling. The Wnt proteins induce transduction of a cytoplasmic protein, Dishevelled (Dvl) which negatively modulates GSK-3ß activity. CXXC5 is a negative modulator of the Wnt/ß-catenin signaling through the interaction with Dvl in the cytosol. This indicates that Wnt/ß-catenin signaling could be efficiently modulated by controlling GSK-3ß and the CXXC5-Dvl interaction. In this study, we designed a series of indirubin-3'-oxime and indirubin-3'-alkoxime derivatives containing various functional groups at the 5- or 6-position (R1) alongside alkyl or benzylic moieties at the 3'-oxime position (R2). These activate Wnt signaling through inhibitions of both GSK-3ß and the CXXC5-Dvl protein-protein interaction, in addition, the improvement of pharmacological properties. The potent activity profiles of the synthesized compounds suggested that dual inhibition of GSK-3ß and the CXXC5-Dvl interaction could be an appropriate approach towards safely and efficientlyactivating Wntsignaling. Thus, dual-targeting inhibitors are potentially better candidates for efficient activation ofWntsignaling compared to GSK-3ß inhibitors.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Dishevelled Proteins/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Indoles , Oximes/pharmacology , Up-Regulation , beta Catenin/metabolism
12.
Biochem Biophys Res Commun ; 549: 40-46, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33662667

ABSTRACT

Pancreatic cancer is a major malignant tumor without an effective treatment. KRAS mutations occur in 90% of the pancreatic cancer patients and are a major obstacle for treatment of pancreatic cancer. Pancreatic cancer patients have been treated with limited chemotherapeutic agents such as gemcitabine. However, patients often develop resistance to gemcitabine that is attributed to KRAS mutations. Gemcitabine treatment activates both the Wnt/ß-catenin and RAS/ERK pathways. These signaling pathways are also activated in the gemcitabine-resistant pancreatic cancer cell lines, suggesting that they play an important role in gemcitabine resistance in pancreatic cancer. The gemcitabine-resistant cell lines show enhanced migratory and invasive capabilities than their parental lines. Therefore, we investigated the effects of a small molecule, KYA1797K that degrades both ß-catenin and RAS, on pancreatic cancer. KYA1797K decreased the expression level of both ß-catenin and KRAS in pancreatic cancer cell lines expressing either wild-type or mutant KRAS. It also suppressed migration and invasion of gemcitabine-resistant and parental pancreatic cancer cells. Overall, we demonstrated that inhibiting the Wnt/ß-catenin and RAS/ERK pathways by destabilizing ß-catenin and RAS could be a therapeutic approach to overcome gemcitabine resistance in pancreatic cancer.


Subject(s)
Deoxycytidine/analogs & derivatives , MAP Kinase Signaling System/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Wnt Signaling Pathway/drug effects , ras Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/pathology , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Humans , Neoplasm Metastasis , Pancreatic Neoplasms/pathology , Proteolysis/drug effects , Proto-Oncogene Proteins p21(ras)/metabolism , Thiazolidines/pharmacology , beta Catenin/metabolism , Gemcitabine
13.
Br J Pharmacol ; 178(12): 2533-2546, 2021 06.
Article in English | MEDLINE | ID: mdl-33751552

ABSTRACT

BACKGROUND AND PURPOSE: The promotion of hair regeneration and growth heavily depends on the activation of Wnt/ß-catenin signalling in the hair follicle, including dermal papilla (DP). KY19382, one of the newly synthesized analogues of indirubin-3'-monoxime (I3O), was identified as a Wnt/ß-catenin signalling activator via inhibition of the interaction between CXXC-type zinc finger protein 5 (CXXC5) and dishevelled (Dvl). Given the close relationship between the Wnt/ß-catenin signalling and hair regeneration, we investigated the effect of KY19382 on hair regrowth and hair follicle neogenesis. EXPERIMENTAL APPROACH: In vitro hair induction effects of KY19382 were performed in human DP cells. The hair elongation effects of KY19382 were confirmed through the human hair follicle and vibrissa culture system. In vivo hair regeneration abilities of KY19382 were identified in three models: hair regrowth, wound-induced hair follicle neogenesis (WIHN) and hair patch assays using C57BL/6 mice. The hair regeneration abilities were analysed by immunoblotting, alkaline phosphatase (ALP) and immunohistochemical staining. KEY RESULTS: KY19382 activated Wnt/ß-catenin signalling and elevated expression of ALP and the proliferation marker PCNA in DP cells. KY19382 also increased hair length in ex vivo-cultured mouse vibrissa and human hair follicles and induced hair regrowth in mice. Moreover, KY19382 significantly promoted the generation of de novo hair follicles as shown by WIHN and hair patch assays. CONCLUSION AND IMPLICATIONS: These results indicate that KY19382 is a potential therapeutic drug that exhibits effective hair regeneration ability via activation of the Wnt/ß-catenin signalling for alopecia treatments.


Subject(s)
Hair Follicle , Hair/growth & development , Wnt Signaling Pathway/drug effects , Animals , Hair Follicle/growth & development , Mice , Mice, Inbred C57BL
14.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166084, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33497821

ABSTRACT

In osteoporosis, mesenchymal stem cells (MSCs) prefer to differentiate into adipocytes at the expense of osteoblasts. Although the balance between adipogenesis and osteogenesis has been closely examined, the mechanism of commitment determination switch is unknown. Here we demonstrate that phospholipase D1 (PLD1) plays a key switch in determining the balance between bone and fat mass. Ablation of Pld1 reduced bone mass but increased fat in mice. Mechanistically, Pld1/- MSCs inhibited osteoblast differentiaion with diminished Runx2 expression, while osteoclast differentiation was accelerated in Pld1-/- bone marrow-derived macrophages. Pld1-/- osteoblasts showed decreased expression of osteogenic makers. Increased number and resorption activity of osteoclasts in Pld1-/- mice were corroborated with upregulation of osteoclastogenic markers. Moreover, Pld1-/- osteoblasts reduced ß-catenin mediated-osteoprotegerin (OPG) with increased RANKL/OPG ratio which resulted in accelerated osteoclast differentiation. Thus, low bone mass with upregulated osteoclasts could be due to the contribution of both osteoblasts and osteoclasts during bone remodeling. Moreover, ablation of Pld1 further increased bone loss in ovariectomized mice, suggesting that PLD1 is a negative regulator of osteoclastogenesis. Furthermore, loss of PLD1 increased adipogenesis, body fat mass, and hepatic steatosis along with upregulation of PPAR-γ and C/EBPα. Interestingly, adipocyte-specific Pld1 transgenic mice rescued the compromised phenotypes of fat mass and adipogenesis in Pld1 knockout mice. Collectively, PLD1 regulated the bifurcating pathways of mesenchymal cell lineage into increased osteogenesis and decreased adipogenesis, which uncovered a previously unrecognized role of PLD1 in homeostasis between bone and fat mass.


Subject(s)
Adipogenesis , Bone Resorption/pathology , Gene Expression Regulation , Osteogenesis , Phospholipase D/physiology , Animals , Bone Resorption/etiology , Bone Resorption/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , beta Catenin/genetics , beta Catenin/metabolism
15.
Biomaterials ; 263: 120391, 2020 12.
Article in English | MEDLINE | ID: mdl-32977259

ABSTRACT

The neoagarohexaose (NA6) is an oligosaccharide that is derived from agarose, the major component of red algae cell walls, by enzymatic hydrolysis. Here we show that NA6 is a noncanonical Toll-like receptor 4 (TLR4) agonist with antiviral activity against norovirus. Its TLR4 activation was dependent on myeloid differentiation factor 2 (MD2) and cluster of differentiation 14 (CD14), leading to interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α) production. This effect was abolished by TLR4 knockdown or knockout in murine macrophages. NA6 inhibited murine norovirus (MNV) replication with an EC50 of 1.5 µM in RAW264.7 cells. It also lowered viral RNA titer in a human hepatocellular carcinoma Huh7-derived cell line harboring a human norovirus subgenomic replicon. The antiviral activity of NA6 was mainly attributed to IFN-ß produced through the TLR4-TRIF signaling pathway. NA6-induced TNF-α, which had little effect on norovirus replication per se, primed macrophages to mount greater antiviral innate immune responses when IFN signaling was activated. NA6 boosted the induction of IFN-ß in MNV-infected RAW264.7 cells and upregulated IFN-regulatory factor-1, an IFN-stimulated gene. NA6 induced IFN-ß expression in the distal ileum with Peyer's patches and oral administration of NA6 reduced MNV loads through activation of TLR4 signaling, highlighting its potential contribution to protective antiviral innate immunity against norovirus.


Subject(s)
Caliciviridae Infections , Norovirus , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Caliciviridae Infections/drug therapy , Mice , Mice, Knockout , Toll-Like Receptor 4 , Virus Replication
16.
Nat Commun ; 9(1): 4903, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464171

ABSTRACT

Mammalian wounds typically heal by fibrotic repair without hair follicle (HF) regeneration. Fibrosis and regeneration are currently considered the opposite end of wound healing. This study sought to determine if scar could be remodeled to promote healing with HF regeneration. Here, we identify that activation of the Sonic hedgehog (Shh) pathway reinstalls a regenerative dermal niche, called dermal papilla, which is required and sufficient for HF neogenesis (HFN). Epidermal Shh overexpression or constitutive Smoothened dermal activation results in extensive HFN in wounds that otherwise end in scarring. While long-term Wnt activation is associated with fibrosis, Shh signal activation in Wnt active cells promotes the dermal papilla fate in scarring wounds. These studies demonstrate that mechanisms of scarring and regeneration are not distant from one another and that wound repair can be redirected to promote regeneration following injury by modifying a key dermal signal.


Subject(s)
Dermis/physiology , Fibroblasts/physiology , Hair Follicle/physiology , Hedgehog Proteins/metabolism , Wound Healing , Animals , Carcinoma, Basal Cell/etiology , Cicatrix/metabolism , Collagen/metabolism , Mice , Skin Neoplasms/etiology , Wnt Signaling Pathway
17.
J Invest Dermatol ; 138(7): 1591-1600, 2018 07.
Article in English | MEDLINE | ID: mdl-29428355

ABSTRACT

Abnormal pigmentation is commonly seen in the wound scar. Despite advancements in the research of wound healing, little is known about the repopulation of melanocytes in the healed skin. Previous studies have shown the capacity of melanocyte stem cells in the hair follicle to contribute skin epidermal melanocytes after injury in mice and humans. Here, we focused on the Wnt pathway, known to be a vital regulator of melanocyte stem cells in efforts to better understand the regulation of follicle-derived epidermal melanocytes during wound healing. We showed that transgenic expression of Wnt inhibitor Dkk1 in melanocytes reduced epidermal melanocytes in the wound scar. Conversely, forced activation of Wnt signaling by genetically stabilizing ß-catenin in melanocytes increases epidermal melanocytes. Furthermore, we show that deletion of Wntless (Wls), a gene required for Wnt ligand secretion, within epithelial cells results in failure in activating Wnt signaling in adjacent epidermal melanocytes. These results show the essential function of extrinsic Wnt ligands in initiating Wnt signaling in follicle-derived epidermal melanocytes during wound healing. Collectively, our results suggest the potential for Wnt signal regulation to promote melanocyte regeneration and provide a potential molecular window to promote proper melanocyte regeneration after wounding and in conditions such as vitiligo.


Subject(s)
Cicatrix/pathology , Melanocytes/pathology , Wnt Proteins/metabolism , Wnt Signaling Pathway , Wound Healing/physiology , Animals , Cell Differentiation , Disease Models, Animal , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Keratinocytes , Male , Mice , Mice, Transgenic , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Regeneration , Skin/cytology , Skin/metabolism , Skin/pathology , Skin Pigmentation/physiology , Stem Cells/physiology
18.
J Invest Dermatol ; 137(11): 2260-2269, 2017 11.
Article in English | MEDLINE | ID: mdl-28595998

ABSTRACT

The Wnt/ß-catenin pathway has been implicated in hair follicle development and hair regeneration in adults. We discovered that CXXC-type zinc finger protein 5 (CXXC5) is a negative regulator of the Wnt/ß-catenin pathway involved in hair regrowth and wound-induced hair follicle neogenesis via an interaction with Dishevelled. CXXC5 was upregulated in miniaturized hair follicles and arrector pili muscles in human balding scalps. The inhibitory effects of CXXC5 on alkaline phosphatase activity and cell proliferation were demonstrated using human hair follicle dermal papilla cells. Moreover, CXXC5-/- mice displayed accelerated hair regrowth, and treatment with valproic acid, a glycogen synthase kinase 3ß inhibitor that activates the Wnt/ß-catenin pathway, further induced hair regrowth in the CXXC5-/- mice. Disrupting the CXXC5-Dishevelled interaction with a competitor peptide activated the Wnt/ß-catenin pathway and accelerated hair regrowth and wound-induced hair follicle neogenesis. Overall, these findings suggest that the CXXC5-Dishevelled interaction is a potential target for the treatment of hair loss.


Subject(s)
Alopecia/genetics , Gene Expression Regulation , Hair Follicle/pathology , Intracellular Signaling Peptides and Proteins/genetics , Valproic Acid/pharmacology , Wounds and Injuries/complications , Alopecia/etiology , Alopecia/pathology , Animals , Cells, Cultured/drug effects , DNA-Binding Proteins , Disease Models, Animal , Dishevelled Proteins , Hair/diagnostic imaging , Hair/drug effects , Hair Follicle/metabolism , Humans , Mice , Peptides/pharmacology , Random Allocation , Regeneration/genetics , Transcription Factors , Up-Regulation , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
19.
Phytother Res ; 30(5): 848-54, 2016 May.
Article in English | MEDLINE | ID: mdl-26929003

ABSTRACT

Polygonum aviculare L. is a member of the Polygonaceae family of plants, which has been known for its antioxidant and anti-obesity effects. However, the wound healing function of P. aviculare extract has not been assessed. In this study, we identified a novel property of P. aviculare extract as a Wnt/ß-catenin pathway activator based on a screen of 350 plant extracts using HEK293-TOP cells retaining the Wnt/ß-catenin signaling reporter gene. P. aviculare extract accelerated the migration of HaCaT keratinocytes without showing significant cytotoxicity. Moreover, P. aviculare extract efficiently re-epithelized wounds generated on mice. Additionally, ingredients of P. aviculare extract, such as quercitrin hydrate, caffeic acid, and rutin, also accelerated the motility of HaCaT keratinocytes with the activation of Wnt/ß-catenin signaling. Therefore, based on our findings, P. aviculare extract and its active ingredients could be potential therapeutic agents for wound healing. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Caffeic Acids/chemistry , Plant Extracts/chemistry , Polygonum/chemistry , Quercetin/analogs & derivatives , Wound Healing/drug effects , beta Catenin/metabolism , Animals , Humans , Male , Mice , Plant Extracts/pharmacology , Quercetin/chemistry , Transfection , Wnt Signaling Pathway
20.
Eur J Pharmacol ; 764: 1-8, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26118836

ABSTRACT

We synthesized and investigated the inhibitory effects of a novel niacinamide derivative, N-nicotinoyltyramine (NNT) on melanogenesis. NNT inhibited melanin production in B16F10 murine melanoma cells stimulated with α-melanocyte stimulating hormone (α-MSH), in human melanocyte and in three-dimensional cultured human skin model. NNT did not affect the catalytic activity of tyrosinase, but acted as an inhibitor of microphthalmia-associated transcription factor (MITF) and tyrosinase expressions in B16F10 cells. These findings suggest that the hypopigmentary effect of NNT results from the down-regulation of MITF and subsequently of tyrosinase, although NNT did not directly inhibit tyrosinase activity. In addition, safety of NNT was verified through performing neural stem cell morphology assay and Human repeated insult patch test as whitening agent. Our findings indicate that NNT may be a potential and non-skin irritant whitening agent for use in cosmetics and in the medical treatment of pigmentary disorders.


Subject(s)
Down-Regulation/drug effects , Melanins/biosynthesis , Microphthalmia-Associated Transcription Factor/genetics , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Nicotinic Acids/pharmacology , Skin Lightening Preparations/chemistry , Skin Lightening Preparations/pharmacology , Tyramine/analogs & derivatives , Animals , Cell Line, Tumor , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Mice , Monophenol Monooxygenase/genetics , Neural Stem Cells/drug effects , Niacinamide/toxicity , Nicotinic Acids/toxicity , Rats , Skin Lightening Preparations/toxicity , Tyramine/pharmacology , Tyramine/toxicity , alpha-MSH/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...