Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 130(2): 981-997, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31855575

ABSTRACT

The protein-protein interaction between menin and mixed lineage leukemia 1 (MLL1) plays a critical role in acute leukemias with translocations of the MLL1 gene or with mutations in the nucleophosmin 1 (NPM1) gene. As a step toward clinical translation of menin-MLL1 inhibitors, we report development of MI-3454, a highly potent and orally bioavailable inhibitor of the menin-MLL1 interaction. MI-3454 profoundly inhibited proliferation and induced differentiation in acute leukemia cells and primary patient samples with MLL1 translocations or NPM1 mutations. When applied as a single agent, MI-3454 induced complete remission or regression of leukemia in mouse models of MLL1-rearranged or NPM1-mutated leukemia, including patient-derived xenograft models, through downregulation of key genes involved in leukemogenesis. We also identified MEIS1 as a potential pharmacodynamic biomarker of treatment response with MI-3454 in leukemia, and demonstrated that this compound is well tolerated and did not impair normal hematopoiesis in mice. Overall, this study demonstrates, for the first time to our knowledge, profound activity of the menin-MLL1 inhibitor as a single agent in clinically relevant PDX models of leukemia. These data provide a strong rationale for clinical translation of MI-3454 or its analogs for leukemia patients with MLL1 rearrangements or NPM1 mutations.


Subject(s)
Antineoplastic Agents/pharmacology , Histone-Lysine N-Methyltransferase , Leukemia , Mutation , Myeloid-Lymphoid Leukemia Protein , Neoplasms, Experimental , Nuclear Proteins , Proto-Oncogene Proteins , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , K562 Cells , Leukemia/drug therapy , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Remission Induction , U937 Cells
2.
Nature ; 574(7777): 273-277, 2019 10.
Article in English | MEDLINE | ID: mdl-31578525

ABSTRACT

Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concordant with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.


Subject(s)
Alternative Splicing/genetics , Carcinogenesis/genetics , Epigenesis, Genetic , Leukemia, Myeloid, Acute/genetics , Animals , Cell Line, Tumor , Cell Proliferation , DNA Methylation , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Isocitrate Dehydrogenase/genetics , Male , Mutation/genetics , RNA Polymerase II/metabolism , Serine-Arginine Splicing Factors/genetics , Transcriptome
3.
Nature ; 574(7778): 432-436, 2019 10.
Article in English | MEDLINE | ID: mdl-31597964

ABSTRACT

SF3B1 is the most commonly mutated RNA splicing factor in cancer1-4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here we integrated pan-cancer splicing analyses with a positive-enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, which is a core component of the recently described non-canonical BAF chromatin-remodelling complex that also contains GLTSCR1 and GLTSCR1L5-7. Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9 and thereby induces the inclusion of a poison exon that is derived from an endogenous retroviral element and subsequent degradation of BRD9 mRNA. Depletion of BRD9 causes the loss of non-canonical BAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumour suppressor in uveal melanoma, such that correcting mis-splicing of BRD9 in SF3B1-mutant cells using antisense oligonucleotides or CRISPR-directed mutagenesis suppresses tumour growth. Our results implicate the disruption of non-canonical BAF in the diverse cancer types that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Neoplasms/genetics , RNA Splicing , Spliceosomes/metabolism , Animals , Cell Line, Tumor , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Humans , Mice , Neoplasm Transplantation , Neoplasms/pathology , Phosphoproteins/metabolism , RNA Splicing Factors/metabolism , Spliceosomes/genetics , Transcription Factors/metabolism
4.
Cancer Cell ; 36(2): 194-209.e9, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31408619

ABSTRACT

Cancer-associated mutations in genes encoding RNA splicing factors (SFs) commonly occur in leukemias, as well as in a variety of solid tumors, and confer dependence on wild-type splicing. These observations have led to clinical efforts to directly inhibit the spliceosome in patients with refractory leukemias. Here, we identify that inhibiting symmetric or asymmetric dimethylation of arginine, mediated by PRMT5 and type I protein arginine methyltransferases (PRMTs), respectively, reduces splicing fidelity and results in preferential killing of SF-mutant leukemias over wild-type counterparts. These data identify genetic subsets of cancer most likely to respond to PRMT inhibition, synergistic effects of combined PRMT5 and type I PRMT inhibition, and a mechanistic basis for the therapeutic efficacy of PRMT inhibition in cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Ethylenediamines/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrroles/pharmacology , RNA Splicing/drug effects , RNA, Neoplasm/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Catalysis , Enzyme Inhibitors/pharmacokinetics , Ethylenediamines/pharmacokinetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Pyrroles/pharmacokinetics , RNA, Neoplasm/genetics , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , THP-1 Cells , Tumor Cells, Cultured , U937 Cells , Xenograft Model Antitumor Assays
5.
Cancer Discov ; 9(10): 1452-1467, 2019 10.
Article in English | MEDLINE | ID: mdl-31285298

ABSTRACT

Altered expression of XPO1, the main nuclear export receptor in eukaryotic cells, has been observed in cancer, and XPO1 has been a focus of anticancer drug development. However, mechanistic evidence for cancer-specific alterations in XPO1 function is lacking. Here, genomic analysis of 42,793 cancers identified recurrent and previously unrecognized mutational hotspots in XPO1. XPO1 mutations exhibited striking lineage specificity, with enrichment in a variety of B-cell malignancies, and introduction of single amino acid substitutions in XPO1 initiated clonal, B-cell malignancy in vivo. Proteomic characterization identified that mutant XPO1 altered the nucleocytoplasmic distribution of hundreds of proteins in a sequence-specific manner that promoted oncogenesis. XPO1 mutations preferentially sensitized cells to inhibitors of nuclear export, providing a biomarker of response to this family of drugs. These data reveal a new class of oncogenic alteration based on change-of-function mutations in nuclear export signal recognition and identify therapeutic targets based on altered nucleocytoplasmic trafficking. SIGNIFICANCE: Here, we identify that heterozygous mutations in the main nuclear exporter in eukaryotic cells, XPO1, are positively selected in cancer and promote the initiation of clonal B-cell malignancies. XPO1 mutations alter nuclear export signal recognition in a sequence-specific manner and sensitize cells to compounds in clinical development inhibiting XPO1 function.This article is highlighted in the In This Issue feature, p. 1325.


Subject(s)
Cell Transformation, Neoplastic , Nuclear Export Signals , Active Transport, Cell Nucleus , Animals , Cell Proliferation , Disease Models, Animal , Gene Expression , Genes, bcl-2 , Genes, myc , Humans , Karyopherins/chemistry , Karyopherins/genetics , Karyopherins/metabolism , Leukemia, B-Cell/genetics , Leukemia, B-Cell/metabolism , Leukemia, B-Cell/mortality , Leukemia, B-Cell/pathology , Mice , Mutation , Organ Specificity/genetics , Protein Binding , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship , Exportin 1 Protein
6.
Cancer Cell ; 34(2): 225-241.e8, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30107174

ABSTRACT

Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.


Subject(s)
Mutation , Neoplasms/genetics , Spliceosomes , Animals , Caspase 8/genetics , Female , Hematopoiesis , Humans , Male , Mice , Mice, Inbred C57BL , NF-kappa B/physiology , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Serine-Arginine Splicing Factors/genetics
7.
Nat Med ; 24(4): 497-504, 2018 05.
Article in English | MEDLINE | ID: mdl-29457796

ABSTRACT

Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor-encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.


Subject(s)
Neoplasms/drug therapy , Neoplasms/genetics , Piperazines/pharmacology , Pyridines/pharmacology , RNA Splicing/genetics , Small Molecule Libraries/therapeutic use , Spliceosomes/genetics , Administration, Oral , Animals , Base Sequence , Humans , Introns/genetics , K562 Cells , Leukemia/genetics , Leukemia/pathology , Mice , Mutation , Neoplasms/pathology , Piperazines/administration & dosage , Pyridines/administration & dosage , RNA Splicing/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Small Molecule Libraries/pharmacology , Tumor Burden , Xenograft Model Antitumor Assays
8.
Blood ; 130(4): 397-407, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28576879

ABSTRACT

Chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) are myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap disorders characterized by monocytosis, myelodysplasia, and a characteristic hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Currently, there are no available disease-modifying therapies for CMML, nor are there preclinical models that fully recapitulate the unique features of CMML. Through use of immunocompromised mice with transgenic expression of human GM-CSF, interleukin-3, and stem cell factor in a NOD/SCID-IL2Rγnull background (NSGS mice), we demonstrate remarkable engraftment of CMML and JMML providing the first examples of serially transplantable and genetically accurate models of CMML. Xenotransplantation of CD34+ cells (n = 8 patients) or unfractionated bone marrow (BM) or peripheral blood mononuclear cells (n = 10) resulted in robust engraftment of CMML in BM, spleen, liver, and lung of recipients (n = 82 total mice). Engrafted cells were myeloid-restricted and matched the immunophenotype, morphology, and genetic mutations of the corresponding patient. Similar levels of engraftment were seen upon serial transplantation of human CD34+ cells in secondary NSGS recipients (2/5 patients, 6/11 mice), demonstrating the durability of CMML grafts and functionally validating CD34+ cells as harboring the disease-initiating compartment in vivo. Successful engraftments of JMML primary samples were also achieved in all NSGS recipients (n = 4 patients, n = 12 mice). Engraftment of CMML and JMML resulted in overt phenotypic abnormalities and lethality in recipients, which facilitated evaluation of the JAK2/FLT3 inhibitor pacritinib in vivo. These data reveal that NSGS mice support the development of CMML and JMML disease-initiating and mature leukemic cells in vivo, allowing creation of genetically accurate preclinical models of these disorders.


Subject(s)
Bridged-Ring Compounds/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelomonocytic, Juvenile/drug therapy , Myelodysplastic Syndromes/drug therapy , Pyrimidines/pharmacology , Animals , Female , Heterografts , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/metabolism , Leukemia, Myelomonocytic, Juvenile/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
9.
Nat Commun ; 8: 15429, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28516957

ABSTRACT

Additional sex combs-like (ASXL) proteins are mammalian homologues of additional sex combs (Asx), a regulator of trithorax and polycomb function in Drosophila. While there has been great interest in ASXL1 due to its frequent mutation in leukemia, little is known about its paralog ASXL2, which is frequently mutated in acute myeloid leukemia patients bearing the RUNX1-RUNX1T1 (AML1-ETO) fusion. Here we report that ASXL2 is required for normal haematopoiesis with distinct, non-overlapping effects from ASXL1 and acts as a haploinsufficient tumour suppressor. While Asxl2 was required for normal haematopoietic stem cell self-renewal, Asxl2 loss promoted AML1-ETO leukemogenesis. Moreover, ASXL2 target genes strongly overlapped with those of RUNX1 and AML1-ETO and ASXL2 loss was associated with increased chromatin accessibility at putative enhancers of key leukemogenic loci. These data reveal that Asxl2 is a critical regulator of haematopoiesis and mediates transcriptional effects that promote leukemogenesis driven by AML1-ETO.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/genetics , Repressor Proteins/genetics , Animals , Bone Marrow Transplantation , Core Binding Factor Alpha 2 Subunit/metabolism , Disease Models, Animal , Haploinsufficiency , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Integrases/genetics , Integrases/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Knockout , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Repressor Proteins/deficiency , Signal Transduction , Survival Analysis
10.
Blood ; 129(15): 2046-2048, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28408421
11.
Nat Med ; 22(9): 976-86, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27603132

ABSTRACT

Recent studies have highlighted that splicing patterns are frequently altered in cancer and that mutations in genes encoding spliceosomal proteins, as well as mutations affecting the splicing of key cancer-associated genes, are enriched in cancer. In parallel, there is also accumulating evidence that several molecular subtypes of cancer are highly dependent on splicing function for cell survival. These findings have resulted in a growing interest in targeting splicing catalysis, splicing regulatory proteins, and/or specific key altered splicing events in the treatment of cancer. Here we present strategies that exist and that are in development to target altered dependency on the spliceosome, as well as aberrant splicing, in cancer. These include drugs to target global splicing in cancer subtypes that are preferentially dependent on wild-type splicing for survival, methods to alter post-translational modifications of splicing-regulating proteins, and strategies to modulate pathologic splicing events and protein-RNA interactions in cancer.


Subject(s)
Alternative Splicing/genetics , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/genetics , RNA Splicing Factors/genetics , RNA Splicing/genetics , Spliceosomes/genetics , Humans , Molecular Targeted Therapy , Mutation , Neoplasms/therapy , Protein Processing, Post-Translational , RNA Splicing Factors/metabolism
13.
Nat Med ; 22(6): 672-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27135740

ABSTRACT

Mutations in genes encoding splicing factors (which we refer to as spliceosomal genes) are commonly found in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations recurrently affect specific amino acid residues, leading to perturbed normal splice site and exon recognition. Spliceosomal gene mutations are always heterozygous and rarely occur together with one another, suggesting that cells may tolerate only a partial deviation from normal splicing activity. To test this hypothesis, we engineered mice to express a mutated allele of serine/arginine-rich splicing factor 2 (Srsf2(P95H))-which commonly occurs in individuals with MDS and AML-in an inducible, hemizygous manner in hematopoietic cells. These mice rapidly succumbed to fatal bone marrow failure, demonstrating that Srsf2-mutated cells depend on the wild-type Srsf2 allele for survival. In the context of leukemia, treatment with the spliceosome inhibitor E7107 (refs. 7,8) resulted in substantial reductions in leukemic burden, specifically in isogenic mouse leukemias and patient-derived xenograft AMLs carrying spliceosomal mutations. Whereas E7107 treatment of mice resulted in widespread intron retention and cassette exon skipping in leukemic cells regardless of Srsf2 genotype, the magnitude of splicing inhibition following E7107 treatment was greater in Srsf2-mutated than in Srsf2-wild-type leukemia, consistent with the differential effect of E7107 on survival. Collectively, these data provide genetic and pharmacologic evidence that leukemias with spliceosomal gene mutations are preferentially susceptible to additional splicing perturbations in vivo as compared to leukemias without such mutations. Modulation of spliceosome function may thus provide a new therapeutic avenue in genetically defined subsets of individuals with MDS or AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Serine-Arginine Splicing Factors/genetics , Spliceosomes/genetics , Anemia, Aplastic/genetics , Animals , Bone Marrow Diseases/genetics , Bone Marrow Failure Disorders , Bone Marrow Transplantation , Catalysis , Cell Line, Tumor , Epoxy Compounds/pharmacology , Flow Cytometry , Gene Knock-In Techniques , Hemizygote , Hemoglobinuria, Paroxysmal/genetics , Humans , Macrolides/pharmacology , Mice , Mice, Knockout , Mutation , Neoplasm Transplantation , RNA Splicing/drug effects , RNA Splicing/genetics , Reverse Transcriptase Polymerase Chain Reaction
14.
Cancer Discov ; 6(2): 154-65, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26566875

ABSTRACT

UNLABELLED: Histiocytic neoplasms are clonal, hematopoietic disorders characterized by an accumulation of abnormal, monocyte-derived dendritic cells or macrophages in Langerhans cell histiocytosis (LCH) and non-Langerhans cell histiocytosis (non-LCH), respectively. The discovery of BRAF(V600E) mutations in approximately 50% of these patients provided the first molecular therapeutic target in histiocytosis. However, recurrent driving mutations in the majority of patients with BRAF(V600E)-wild-type non-LCH are unknown, and recurrent cooperating mutations in non-MAP kinase pathways are undefined for the histiocytic neoplasms. Through combined whole-exome and transcriptome sequencing, we identified recurrent kinase fusions involving BRAF, ALK, and NTRK1, as well as recurrent, activating MAP2K1 and ARAF mutations in patients with BRAF(V600E)-wild-type non-LCH. In addition to MAP kinase pathway lesions, recurrently altered genes involving diverse cellular pathways were identified. Treatment of patients with MAP2K1- and ARAF-mutated non-LCH using MEK and RAF inhibitors, respectively, resulted in clinical efficacy, demonstrating the importance of detecting and targeting diverse kinase alterations in these disorders. SIGNIFICANCE: We provide the first description of kinase fusions in systemic histiocytic neoplasms and activating ARAF and MAP2K1 mutations in non-Langerhans histiocytic neoplasms. Refractory patients with MAP2K1- and ARAF-mutant histiocytoses had clinical responses to MEK inhibition and sorafenib, respectively, highlighting the importance of comprehensive genomic analysis of these disorders.


Subject(s)
Gene Expression Profiling/methods , Histiocytosis, Langerhans-Cell/enzymology , Histiocytosis, Non-Langerhans-Cell/enzymology , Mutation , Sequence Analysis, DNA/methods , Anaplastic Lymphoma Kinase , Histiocytosis, Langerhans-Cell/drug therapy , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Non-Langerhans-Cell/drug therapy , Histiocytosis, Non-Langerhans-Cell/genetics , Humans , MAP Kinase Kinase 1/genetics , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor, trkA/genetics
15.
Nature ; 525(7570): 538-42, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26367796

ABSTRACT

Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/ß-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.


Subject(s)
Benzodiazepines/pharmacology , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Animals , Azepines/pharmacology , Cell Cycle Proteins , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Targeted Therapy , Neoplastic Stem Cells/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Triazoles/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
16.
Blood ; 126(8): 1005-8, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26065650

ABSTRACT

Hairy cell leukemia (HCL) is marked by near 100% mutational frequency of BRAFV600E mutations. Recurrent cooperating genetic events that may contribute to HCL pathogenesis or affect the clinical course of HCL are currently not described. Therefore, we performed whole exome sequencing to explore the mutational landscape of purine analog refractory HCL. In addition to the disease-defining BRAFV600E mutations, we identified mutations in EZH2, ARID1A, and recurrent inactivating mutations of the cell cycle inhibitor CDKN1B (p27). Targeted deep sequencing of CDKN1B in a larger cohort of HCL patients identify deleterious CDKN1B mutations in 16% of patients with HCL (n = 13 of 81). In 11 of 13 patients the CDKN1B mutation was clonal, implying an early role of CDKN1B mutations in the pathogenesis of HCL. CDKN1B mutations were not found to impact clinical characteristics or outcome in this cohort. These data identify HCL as having the highest frequency of CDKN1B mutations among cancers and identify CDNK1B as the second most common mutated gene in HCL. Moreover, given the known function of CDNK1B, these data suggest a novel role for alterations in regulation of cell cycle and senescence in HCL with CDKN1B mutations.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27/genetics , Leukemia, Hairy Cell/genetics , Mutation , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Humans , Recurrence
17.
J Clin Invest ; 124(10): 4227-30, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25244089

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is a disorder of hematopoietic stem cells that has largely been considered a monogenic disorder due to acquisition of mutations in the gene encoding PIGA, which is required for glycosylphosphatidylinositol (GPI) anchor biosynthesis. In this issue of the JCI, Shen et al. discovered that PNH is in fact a complex genetic disorder orchestrated by many genetic alterations in addition to PIGA mutations. Some of these mutations predate the acquisition of PIGA mutations, while others occur later. Surprisingly, this work indicates that PNH has a clonal evolution and architecture strikingly similar to that of other myeloid neoplasms, highlighting a potentially broader mechanism of disease pathogenesis in this disorder.


Subject(s)
Hemoglobinuria, Paroxysmal/genetics , High-Throughput Nucleotide Sequencing/methods , Membrane Proteins/genetics , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...