Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(19): e2108586, 2022 May.
Article in English | MEDLINE | ID: mdl-35245965

ABSTRACT

Recent growing pursuit of skin-mountable devices has been impeded by the complicated structures of most sensing systems, containing electrode grids, stacked multilayers, and even external power sources. Here, a type of touch sensing, termed "triboresistive touch sensing", is introduced for gridless touch recognition based on monolayered ionic power generators. A homogeneous monolayer, i.e., ionic poly(dimethylsiloxane) (PDMS), generates electricity based on the electric field generated by touch. Voltages generated at each corner of the ionic PDMS rely on resistance between touch points and each corner, ensuring recognition of the touch positions without the need for electrode grid layers and external power sources. With notable advantages of high transparency (96.5%), stretchability (539.1%), and resilience (99.0%) of the ionic PDMS, epidermal triboresistive sensing is demonstrated to express touch position and readily play a musical instrument. A gridless system of triboresistive sensing allows rearrangement of the touch sections according to a given situation without any physical modification, and thus easily completes consecutive missions of controlling position, orientation, and gripping functions of a robot.

2.
Sci Robot ; 5(49)2020 12 16.
Article in English | MEDLINE | ID: mdl-33328297

ABSTRACT

Soft sensors have been playing a crucial role in detecting different types of physical stimuli to part or the entire body of a robot, analogous to mechanoreceptors or proprioceptors in biology. Most of the currently available soft sensors with compact form factors can detect only a single deformation mode at a time due to the limitation in combining multiple sensing mechanisms in a limited space. However, realizing multiple modalities in a soft sensor without increasing its original form factor is beneficial, because even a single input stimulus to a robot may induce a combination of multiple modes of deformation. Here, we report a multifunctional soft sensor capable of decoupling combined deformation modes of stretching, bending, and compression, as well as detecting individual deformation modes, in a compact form factor. The key enabling design feature of the proposed sensor is a combination of heterogeneous sensing mechanisms: optical, microfluidic, and piezoresistive sensing. We characterize the performance on both detection and decoupling of deformation modes, by implementing both a simple algorithm of threshold evaluation and a machine learning technique based on an artificial neural network. The proposed soft sensor is able to estimate eight different deformation modes with accuracies higher than 95%. We lastly demonstrate the potential of the proposed sensor as a method of human-robot interfaces with several application examples highlighting its multifunctionality.


Subject(s)
Robotics/instrumentation , Algorithms , Biomechanical Phenomena , Computer Simulation , Equipment Design , Humans , Ionic Liquids , Lab-On-A-Chip Devices , Machine Learning , Neural Networks, Computer , Optical Devices , Robotics/statistics & numerical data , User-Computer Interface
3.
Artif Intell Med ; 94: 110-116, 2019 03.
Article in English | MEDLINE | ID: mdl-30871677

ABSTRACT

INTRODUCTION: Visual field testing via standard automated perimetry (SAP) is a commonly used glaucoma diagnosis method. Applying machine learning techniques to the visual field test results, a valid clinical diagnosis of glaucoma solely based on the SAP data is provided. In order to reflect structural-functional patterns of glaucoma on the automated diagnostic models, we propose composite variables derived from anatomically grouped visual field clusters to improve the prediction performance. A set of machine learning-based diagnostic models are designed that implement different input data manipulation, dimensionality reduction, and classification methods. METHODS: Visual field testing data of 375 healthy and 257 glaucomatous eyes were used to build the diagnostic models. Three kinds of composite variables derived from the Garway-Heath map and the glaucoma hemifield test (GHT) sector map were included in the input variables in addition to the 52 SAP visual filed locations. Dimensionality reduction was conducted to select important variables so as to alleviate high-dimensionality problems. To validate the proposed methods, we applied four classifiers-linear discriminant analysis, naïve Bayes classifier, support vector machines, and artificial neural networks-and four dimensionality reduction methods-Pearson correlation coefficient-based variable selection, Markov blanket variable selection, the minimum redundancy maximum relevance algorithm, and principal component analysis- and compared their classification performances. RESULTS: For all tested combinations, the classification performance improved when the proposed composite variables and dimensionality reduction techniques were implemented. The combination of total deviation values, the GHT sector map, support vector machines, and Markov blanket variable selection obtains the best performance: an area under the receiver operating characteristic curve (AUC) of 0.912. CONCLUSION: A glaucoma diagnosis model giving an AUC of 0.912 was constructed by applying machine learning techniques to SAP data. The results show that dimensionality reduction not only reduces dimensions of the input space but also enhances the classification performance. The variable selection results show that the proposed composite variables from visual field clustering play a key role in the diagnosis model.


Subject(s)
Glaucoma/diagnosis , Machine Learning , Visual Field Tests , Adult , Automation , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...