Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (204)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38436407

ABSTRACT

Most living organisms possess circadian rhythms, which are biological processes that occur within a period of approximately 24 h and regulate a diverse repertoire of cellular and physiological processes ranging from sleep-wake cycles to metabolism. This clock mechanism entrains the organism based on environmental changes and coordinates the temporal regulation of molecular and physiological events. Previously, it was demonstrated that autonomous circadian rhythms are maintained even at the single-cell level using cell lines such as NIH3T3 fibroblasts, which were instrumental in uncovering the mechanisms of circadian rhythms. However, these cell lines are homogeneous cultures lacking multicellularity and robust intercellular communications. In the past decade, extensive work has been performed on the development, characterization, and application of 3D organoids, which are in vitro multicellular systems that resemble in vivo morphological structures and functions. This paper describes a protocol for detecting circadian rhythms using a bioluminescent reporter in human intestinal enteroids, which enables the investigation of circadian rhythms in multicellular systems in vitro.


Subject(s)
Cell Communication , Organoids , Humans , Mice , Animals , NIH 3T3 Cells , Circadian Rhythm , Fibroblasts
2.
Gastroenterology ; 163(5): 1377-1390.e11, 2022 11.
Article in English | MEDLINE | ID: mdl-35934064

ABSTRACT

BACKGROUND & AIMS: The circadian clock orchestrates ∼24-hour oscillations of gastrointestinal epithelial structure and function that drive diurnal rhythms in gut microbiota. Here, we use experimental and computational approaches in intestinal organoids to reveal reciprocal effects of gut microbial metabolites on epithelial timekeeping by an epigenetic mechanism. METHODS: We cultured enteroids in media supplemented with sterile supernatants from the altered Schaedler Flora (ASF), a defined murine microbiota. Circadian oscillations of bioluminescent PER2 and Bmal1 were measured in the presence or absence of individual ASF supernatants. Separately, we applied machine learning to ASF metabolomics to identify phase-shifting metabolites. RESULTS: Sterile filtrates from 3 of 7 ASF species (ASF360 Lactobacillus intestinalis, ASF361 Ligilactobacillus murinus, and ASF502 Clostridium species) induced minimal alterations in circadian rhythms, whereas filtrates from 4 ASF species (ASF356 Clostridium species, ASF492 Eubacterium plexicaudatum, ASF500 Pseudoflavonifactor species, and ASF519 Parabacteroides goldsteinii) induced profound, concentration-dependent phase shifts. Random forest classification identified short-chain fatty acid (SCFA) (butyrate, propionate, acetate, and isovalerate) production as a discriminating feature of ASF "shifters." Experiments with SCFAs confirmed machine learning predictions, with a median phase shift of 6.2 hours in murine enteroids. Pharmacologic or botanical histone deacetylase (HDAC) inhibitors yielded similar findings. Further, mithramycin A, an inhibitor of HDAC inhibition, reduced SCFA-induced phase shifts by 20% (P < .05) and conditional knockout of HDAC3 in enteroids abrogated butyrate effects on Per2 expression. Key findings were reproducible in human Bmal1-luciferase enteroids, colonoids, and Per2-luciferase Caco-2 cells. CONCLUSIONS: Gut microbe-generated SCFAs entrain intestinal epithelial circadian rhythms by an HDACi-dependent mechanism, with critical implications for understanding microbial and circadian network regulation of intestinal epithelial homeostasis.


Subject(s)
Circadian Rhythm , Gastrointestinal Microbiome , Humans , Mice , Animals , Circadian Rhythm/physiology , Gastrointestinal Microbiome/physiology , Histone Deacetylases , Caco-2 Cells , ARNTL Transcription Factors , Propionates , Fatty Acids, Volatile/metabolism , Butyrates , Histone Deacetylase Inhibitors/pharmacology , Luciferases
3.
Front Genet ; 13: 874288, 2022.
Article in English | MEDLINE | ID: mdl-35559029

ABSTRACT

Circadian rhythms exist in most cell types in mammals regulating temporal organization of numerous cellular and physiological processes ranging from cell cycle to metabolism. The master clock, suprachiasmatic nucleus (SCN) in the hypothalamus, processes light input and coordinates peripheral clocks optimizing organisms' survival and functions aligning with external conditions. Intriguingly, it was demonstrated that circadian rhythms in the mouse liver can be decoupled from the master clock under time-restricted feeding regimen when food was provided during their inactive phase. Furthermore, mouse liver showed clock-controlled gene expression even in the absence of the master clock demonstrating independent functions of peripheral clocks apart from the SCN. These findings suggest a dynamic relationship between the master and peripheral clocks and highlight potential functions of peripheral clocks independent of the master clock. Importantly, disruption of circadian rhythms correlates with numerous human ailments including cancer and metabolic diseases, suggesting that diseases may be exacerbated by disruption of circadian rhythms in the SCN and/or peripheral clocks. However, molecular mechanisms providing causative links between circadian rhythms and human diseases remain largely unknown. Recent technical advances highlighted PCS- and tissue-derived 3-dimensional organoids as in vitro organs that possess numerous applications ranging from disease modeling to drug screening. In this mini-review, we highlight recent findings on the importance and contributions of peripheral clocks and potential uses of 3D organoids investigating complex circadian clock-related diseases.

4.
EMBO J ; 41(2): e106973, 2022 12 17.
Article in English | MEDLINE | ID: mdl-34704277

ABSTRACT

Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that ~3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.


Subject(s)
Circadian Clocks , Jejunum/cytology , Organoids/metabolism , Animals , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Cell Death , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Organoids/drug effects , Organoids/physiology , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
5.
Biophys J ; 115(11): 2250-2258, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30467024

ABSTRACT

During differentiation, intestinal stem cells (ISCs), a prototypical adult stem cell pool, become either secretory transit-amplifying cells, which give rise to all secretory cell types, or absorptive transit-amplifying cells, which give rise to enterocytes. These cells exhibit distinct cell cycle dynamics: ISCs cycle with a period of 24 h and absorptive transit-amplifying cells cycle with a period of ∼12 h, whereas secretory transit-amplifying cells arrest their cycle. The cell cycle dynamics of ISCs and their progeny are a systems-level property that emerges from interactions between the cell cycle control machinery and multiple regulatory pathways. Although many mathematical models have been developed to study the details of the cell cycle and related regulatory pathways, few models have been constructed to unravel the dynamic consequences of their interactions. To fill this gap, we present a simplified model focusing on the interaction between four key regulatory pathways (STAT, Wnt, Notch, and MAPK) and cell cycle control. After experimentally validating a model prediction, which showed that the Notch pathway can fine-tune the cell cycle period, we perform further model analysis that reveals that the change of cell cycle period accompanying ISC differentiation may be controlled by a design principle that has been well studied in dynamical systems theory-a saddle node on invariant circle bifurcation. Given that the mechanisms that control the cell cycle are conserved in most eukaryotic cell types, this general principle potentially controls the interplay between proliferation and differentiation for a broad range of stem cells.


Subject(s)
Cell Cycle , Cell Differentiation , Intestines/cytology , Models, Theoretical , Stem Cells/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Cells, Cultured , Humans , Intestines/physiology , Receptors, Notch/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Stem Cells/physiology
6.
J Am Heart Assoc ; 6(5)2017 May 08.
Article in English | MEDLINE | ID: mdl-28483776

ABSTRACT

BACKGROUND: Bioprosthetic heart valves (BHVs), fabricated from glutaraldehyde-pretreated bovine pericardium or porcine aortic valves, are widely used for the surgical or interventional treatment of heart valve disease. Reoperation becomes increasingly necessary over time because of BHV dysfunction. METHODS AND RESULTS: Forty-seven explanted BHV aortic valve replacements were retrieved at reoperation for clinically severe BHV dysfunction over the period 2010-2016. Clinical explant analyses of BHV leaflets for calcium (atomic absorption spectroscopy) and oxidized amino acids, per mass spectroscopy, were primary end points. Comorbidities for earlier BHV explant included diabetes mellitus and coronary artery bypass grafting. Mean calcium levels in BHV leaflets were significantly increased compared with unimplanted BHV (P<0.001); however, time to reoperation did not differ comparing calcified and noncalcified BHV. BHV dityrosine, an oxidized amino acid cross-link, was significantly increased in the explants (227.55±33.27 µmol/mol [dityrosine/tyrosine]) but was undetectable in unimplanted leaflets (P<0.001). BHV regional analyses revealed that dityrosine, ranging from 57.5 to 227.8 µmol/mol (dityrosine/tyrosine), was detectable only in the midleaflet samples, indicating the site-specific nature of dityrosine formation. 3-Chlorotyrosine, an oxidized amino acid formed by myeloperoxidase-catalyzed chlorinating oxidants, correlated with BHV calcium content in leaflet explant analyses from coronary artery bypass graft patients (r=0.62, P=0.01) but was not significantly correlated with calcification in non-coronary artery bypass graft explanted BHV. CONCLUSIONS: Both increased BHV leaflet calcium levels and elevated oxidized amino acids were associated with bioprosthesis dysfunction necessitating reoperation; however, BHV calcium levels were not a determinant of implant duration, indicating a potentially important role for oxidized amino acid formation in BHV dysfunction.


Subject(s)
Aortic Valve Insufficiency/etiology , Aortic Valve Stenosis/etiology , Aortic Valve/pathology , Bioprosthesis , Calcinosis/etiology , Calcium/metabolism , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis , Heart Valves/surgery , Oxidative Stress , Prosthesis Failure , Adult , Aged , Aged, 80 and over , Aortic Valve/metabolism , Aortic Valve/surgery , Aortic Valve Insufficiency/metabolism , Aortic Valve Insufficiency/pathology , Aortic Valve Insufficiency/surgery , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Aortic Valve Stenosis/surgery , Calcinosis/metabolism , Calcinosis/pathology , Calcinosis/surgery , Comorbidity , Depsipeptides/metabolism , Device Removal , Disease Progression , Female , Heart Valve Prosthesis Implantation/adverse effects , Heart Valves/metabolism , Heart Valves/pathology , Humans , Male , Mass Spectrometry , Middle Aged , Prosthesis Design , Registries , Risk Factors , Spectrophotometry, Atomic , Time Factors , Treatment Outcome , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Young Adult
7.
Am J Respir Cell Mol Biol ; 52(3): 332-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25078456

ABSTRACT

CD38 is a multifunctional enzyme that catalyzes the formation of the endogenous Ca(2+)-mobilizing messengers cyclic ADP-ribose (cADPR) and nicotinic acid adenosine dinucleotide phosphate (NAADP) for the activation of ryanodine receptors (RyRs) of sarcoplasmic reticulum and NAADP-sensitive Ca(2+) release channels in endolysosomes, respectively. It plays important roles in systemic vascular functions, but there is little information on CD38 in pulmonary arterial smooth muscle cells (PASMCs). Earlier studies suggested a redox-sensing role of CD38 in hypoxic pulmonary vasoconstriction. This study sought to characterize its roles in angiotensin II (Ang II)-induced Ca(2+) release (AICR) in PASMCs. Examination of CD38 expression in various rat arteries found high levels of CD38 mRNA and protein in pulmonary arteries. The Ang II-elicited Ca(2+) response consisted of extracellular Ca(2+) influx and intracellular Ca(2+) release in PASMCs. AICR activated in the absence of extracellular Ca(2+) was reduced by pharmacological or siRNA inhibition of CD38, by the cADPR antagonist 8-bromo-cADPR or ryanodine, and by the NAADP antagonist Ned-19 or disruption of endolysosomal Ca(2+) stores with the vacuolar H(+)-ATPase inhibitor bafilomycin A1. Suppression of AICR by the inhibitions of cADPR- and NAADP-dependent pathways were nonadditive, indicating interdependence of RyR- and NAADP-gated Ca(2+) release. Furthermore, AICR was inhibited by the protein kinase C inhibitor staurosporine, the nonspecific NADPH oxidase (NOX) inhibitors apocynin and diphenyleneiodonium, the NOX2-specific inhibitor gp91ds-tat, and the scavenger of reactive oxygen species (ROS) tempol. These results provide the first evidence that Ang II activates CD38-dependent Ca(2+) release via the NOX2-ROS pathway in PASMCs.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Angiotensin II/metabolism , Calcium/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Animals , Calcium Channels/metabolism , Male , Membrane Glycoproteins/metabolism , NADP/analogs & derivatives , NADP/metabolism , NADPH Oxidase 2 , NADPH Oxidases/metabolism , Protein Kinase C/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
8.
Biomaterials ; 35(8): 2401-2410, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24388388

ABSTRACT

Adult stem cells hold great promise as a source of diverse terminally differentiated cell types for tissue engineering applications. However, due to the complexity of chemical and mechanical cues specifying differentiation outcomes, development of arbitrarily complex geometric and structural arrangements of cells, adopting multiple fates from the same initial stem cell population, has been difficult. Here, we show that the topography of the cell adhesion substratum can be an instructive cue to adult stem cells and topographical variations can strongly bias the differentiation outcome of the cells towards adipocyte or osteocyte fates. Switches in cell fate decision from adipogenic to osteogenic lineages were accompanied by changes in cytoskeletal stiffness, spanning a considerable range in the cell softness/rigidity spectrum. Our findings suggest that human mesenchymal stem cells (hMSC) can respond to the varying density of nanotopographical cues by regulating their internal cytoskeletal network and use these mechanical changes to guide them toward making cell fate decisions. We used this finding to design a complex two-dimensional pattern of co-localized cells preferentially adopting two alternative fates, thus paving the road for designing and building more complex tissue constructs with diverse biomedical applications.


Subject(s)
Adult Stem Cells/cytology , Cell Culture Techniques , Cell Differentiation , Mesenchymal Stem Cells/cytology , Nanotechnology/methods , Adipocytes/cytology , Biomimetics , Cell Adhesion , Cells, Cultured , Cytoskeleton/metabolism , Humans , Image Processing, Computer-Assisted , Microscopy, Confocal , Osteogenesis/physiology , Phenotype , Tissue Engineering
9.
J Biol Chem ; 288(15): 10381-94, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23443655

ABSTRACT

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca(2+)-mobilizing messenger that releases Ca(2+) from endolysosomal organelles. Recent studies showed that NAADP-induced Ca(2+) release is mediated by the two-pore channels (TPCs) TPC1 and TPC2. However, the expression of TPCs and the NAADP-induced local Ca(2+) signals have not been examined in vascular smooth muscle. Here, we found that both TPC1 and TPC2 are expressed in rat pulmonary arterial smooth muscle cells (PASMCs), with TPC1 being the major subtype. Application of membrane-permeant NAADP acetoxymethyl ester to PASMCs elicited a biphasic increase in global [Ca(2+)]i, which was independent of extracellular Ca(2+) and blocked by the NAADP antagonist Ned-19 or the vacuolar H(+)-ATPase inhibitor bafilomycin A1, indicating Ca(2+) release from acidic endolysosomal Ca(2+) stores. The Ca(2+) response was unaffected by xestospongin C but was partially blocked by ryanodine or thapsigargin. NAADP triggered heterogeneous local Ca(2+) signals, including a diffuse increase in cytosolic [Ca(2+)], Ca(2+) sparks, Ca(2+) bursts, and regenerative Ca(2+) release. The diffuse Ca(2+) increase and Ca(2+) bursts were ryanodine-insensitive, presumably arising from different endolysosomal sources. Ca(2+) sparks and regenerative Ca(2+) release were inhibited by ryanodine, consistent with cross-activation of loosely coupled ryanodine receptors. Moreover, Ca(2+) release stimulated by endothelin-1 was inhibited by Ned-19, ryanodine, or xestospongin C, suggesting that NAADP-mediated Ca(2+) signals interact with both ryanodine and inositol 1,4,5-trisphosphate receptors during agonist stimulation. Our results show that NAADP mediates complex global and local Ca(2+) signals. Depending on the physiological stimuli, these diverse Ca(2+) signals may serve to regulate different cellular functions in PASMCs.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Myocytes, Smooth Muscle/metabolism , NADP/analogs & derivatives , Pulmonary Artery/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Carbolines/pharmacology , Endothelin-1/metabolism , Gene Expression Regulation/drug effects , Macrocyclic Compounds/pharmacology , Male , Myocytes, Smooth Muscle/cytology , NADP/antagonists & inhibitors , NADP/metabolism , Oxazoles/pharmacology , Piperazines/pharmacology , Pulmonary Artery/cytology , Rats , Rats, Wistar , Ryanodine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...