Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 5(3): 861-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23289501

ABSTRACT

Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in terms of fullerene acceptor. The low EQE and J(SC) in PBDTTPD and PBDTTT-C blended with ICBA and ICTA were attributed to an insufficient ΔG(CT) due to the higher LUMO levels of the fullerene multiadducts. Quantitative information on the efficiency of the charge transfer was obtained by comparing the polaron yield, lifetime, and exciton dissociation probability in the DA copolymer:fullerene acceptor films.

2.
Theor Appl Genet ; 122(5): 885-91, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21113703

ABSTRACT

Induced mutations were used to improve the low seed fertility of an intergeneric allopolyploid, 'Baemoochae,' ×Brassicoraphanus, synthesized following hybridization between Brassica rapa and Raphanus sativus. The mutagen N-methyl-N-nitroso-urethane (NMU) was added to microspore cultures. Four lines of nine in the Mi(2) generation showed very high fertility under controlled pollination. The progeny lines (Mi(3)) confirmed this result under open pollination, and excellent uniformity was observed in plants grown in the field, as well as in their AFLP profile. On attaining high fertility and uniformity, one of the lines was released to farmers as a new leafy vegetable crop. The original nine lines shared very similar AFLP banding patterns, without any large differences between the high and low seed fertility lines. Thus, mutation induction accelerated genetic stabilization of a newly synthesized allopolyploid, ×Brassicoraphanus.


Subject(s)
Brassica rapa/genetics , Breeding/methods , Hybridization, Genetic , Mutation , Raphanus/genetics , Amplified Fragment Length Polymorphism Analysis , Chromosomes, Plant , Plant Leaves/genetics , Plants, Genetically Modified , Pollen , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL