Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Clin Cancer Res ; 30(13): 2812-2821, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38639918

ABSTRACT

PURPOSE: Given its heterogeneity and diverse clinical outcomes, precise subclassification of Barcelona Clinic Liver Cancer stage C (BCLC-C) hepatocellular carcinoma (HCC) is required for appropriately determining patient prognosis and selecting treatment. EXPERIMENTAL DESIGN: We recruited 2,626 patients with BCLC-C HCC from multiple centers, comprising training/test (n = 1,693) and validation cohorts (n = 933). The XGBoost model was chosen for maximum performance among the machine learning (ML) models. Patients were categorized into low-, intermediate-, high-, and very high-risk subgroups based on the estimated prognosis, and this subclassification was named the CLAssification via Machine learning of BCLC-C (CLAM-C). RESULTS: The areas under the receiver operating characteristic curve of the CLAM-C for predicting the 6-, 12-, and 24-month survival of patients with BCLC-C were 0.800, 0.831, and 0.715, respectively-significantly higher than those of the conventional models, which were consistent in the validation cohort. The four subgroups had significantly different median overall survivals, and this difference was maintained among various patient subgroups and treatment modalities. Immune-checkpoint inhibitors and transarterial therapies were associated with significantly better survival than tyrosine kinase inhibitors (TKI) in the low- and intermediate-risk subgroups. In cases with first-line systemic therapy, the CLAM-C identified atezolizumab-bevacizumab as the best therapy, particularly in the high-risk group. In cases with later-line systemic therapy, nivolumab had better survival than TKIs in the low-to-intermediate-risk subgroup, whereas TKIs had better survival in the high- to very high-risk subgroup. CONCLUSIONS: ML modeling effectively subclassified patients with BCLC-C HCC, potentially aiding treatment allocation. Our study underscores the potential utilization of ML modeling in terms of prognostication and treatment allocation in patients with BCLC-C HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Machine Learning , Humans , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/diagnosis , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/diagnosis , Female , Male , Prognosis , Middle Aged , Aged , Neoplasm Staging , Algorithms , ROC Curve , Adult
2.
Andrology ; 9(3): 933-943, 2021 05.
Article in English | MEDLINE | ID: mdl-33420748

ABSTRACT

BACKGROUND: Relaxation of prostate smooth muscle tone is a key strategy for the medical treatment of lower urinary tract symptoms (LUTS) in men. However, potassium channel's physiological role inhuman prostatic smooth muscle (HPrSM) has yet to be determined. OBJECTIVES: In this study, we examined the molecular characteristics and physiological roles of Kv7 channels in HPrSM. MATERIALS AND METHODS: The expressions of KCNQ1-5 (Kv7 channel pore-forming α-subunits) and KCNE1-5 (ß-regulatory subunits) isoforms in HPrSM were examined using real-time PCR. The relaxation effect of ML213 was investigated by cumulatively adding ML213 to the prostate strips. Kv7 currents were recorded using an amphotericin-B perforated patch-clamp technique. RESULTS: In HPrSM cells, KCNQ4, KCNQ5, and KCNE4 isoforms were predominantly expressed, while KCNQ1, KCNQ5, and KCNE3 isoforms were the most abundantly expressed in human prostatic tissues. Western blot analysis revealed the protein expression of the Kv7.1, 7.4, and 7.5 channel subtypes in human prostate tissues (n = 3). ML213 (an activator of Kv7.2/7.4/7.5) induced the concentration-dependent relaxation of HPrSM strips (n = 15, p = 0.001), and this effect was attenuated by pretreatment with XE991 (a Kv7.1-7.5 blocker). In electrophysiology studies, ML213 significantly increased the amplitude of whole-cell Kv7 currents in HPrSM cells. ML213-induced outward currents were greater than retigabine (a Kv7.2-7.5 channel activator). The subsequent addition of XE991 completely inhibited the ML213-induced currents (n = 9, p < 0.01 vs. ML213). ML213 hyperpolarized the HPrSM cell membrane potential and was fully reversed by XE991. In situ PLA revealed the colocalization of heteromeric KV7.4/KV7.5 channels in HPrSM cells. CONCLUSIONS: Our findings suggest that Kv7.4 and 7.5 channels in prostatic smooth muscle play a critical role in the regulation of HPrSM tone and that Kv7 channel subtypes may be novel therapeutic targets for the treatment of LUTS associated with BPH.


Subject(s)
Muscle, Smooth/metabolism , Potassium Channels, Voltage-Gated/metabolism , Prostate/metabolism , Anilides , Bridged Bicyclo Compounds , Cell Line , Humans , In Vitro Techniques , Male , Potassium Channels, Voltage-Gated/genetics
3.
J Neuroimaging ; 31(2): 287-296, 2021 03.
Article in English | MEDLINE | ID: mdl-33406294

ABSTRACT

BACKGROUND AND PURPOSE: Brain asymmetries are reported in posttraumatic stress disorder, but many aspects of laterality and traumatic stress remain underexplored. This study explores lateralization changes in resting state brain network functional connectivity in a cohort with symptoms of military-related traumatic stress, associated with use of a closed-loop neurotechnology, HIRREM. METHODS: Eighteen participants (17 males, mean age 41 years [SD = 7]) received 19.5 (1.1) HIRREM sessions over 12 days. Whole brain resting magnetic resonance imaging was done pre- and post-HIRREM. Laterality of functional connectivity was assessed on a whole brain basis, and in six predefined networks or regions. Laterality of connectivity within networks or regions was assessed separately from laterality of connections between networks or regions. RESULTS: Before HIRREM, significant laterality effects of connection type (ipsilateral for either side, or contralateral in either direction) were observed for the whole brain, within networks or regions, and between networks or regions. Post-HIRREM, there were significant changes for within-network or within-region analysis in the motor network, and changes for between-network or between-region analyses for the salience network and the motor cortex. CONCLUSIONS: Among military service members and Veterans with symptoms of traumatic stress, asymmetries of network and brain region connectivity patterns were identified prior to usage of HIRREM. A variety of changes in lateralized patterns of brain connectivity were identified postintervention. These laterality findings may inform future studies of brain connectivity in traumatic stress disorders, with potential to point to mechanisms of action for successful intervention.


Subject(s)
Brain/physiopathology , Functional Laterality , Military Personnel/psychology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Rest , Stress Disorders, Post-Traumatic/diagnostic imaging , Veterans
4.
Brain Behav ; 10(11): e01826, 2020 11.
Article in English | MEDLINE | ID: mdl-32940419

ABSTRACT

INTRODUCTION: Effective insomnia interventions that also address autonomic dysregulation are lacking. We evaluate high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM® ), in a randomized, controlled clinical trial. HIRREM is a noninvasive, closed-loop, allostatic, acoustic stimulation neurotechnology, to support self-optimization of brain rhythms. METHODS: One hundred and seven adults (mean age 45.7, SD ± 5.6, 73 women), with Insomnia Severity Index (ISI) scores of ≥15, received ten, 90-min sessions of HIRREM, with tones linked to brainwaves (LB, 56), or random tones not linked to brainwaves (NL, 51), as an active, sham placebo. Outcomes were obtained at enrollment (V1), 1-7 days (V2), 8-10 weeks (V3), and 16-18 weeks (V4) after intervention. Primary outcome was differential change in ISI from V1 to V3. Secondary measures assessed depression (BDI), anxiety (BAI), quality of life (EQ-5D), and a sleep diary. Ten minute recordings of HR and BP allowed analysis of heart rate variability (HRV) and baroreflex sensitivity (BRS). RESULTS: Of 107 randomized, 101 completed the intervention. Intention-to-treat analysis (107) of change from V1 to V3 revealed a mean reduction of ISI in NL of -4.93 (SE ± 0.76) points, with additional, significant reduction of -2.05 points (0.74) in LB (total reduction of -6.98, p = .045). Additional reduction of -2.30 points (0.76) was still present in the LB at V4 (p = .058). Total ISI reduction from V1 to V4 was -5.90 points for NL and -7.93 points in LB. There were group differences (p < .05) for multiple HRV and BRS measures (rMSSD, SDNN, HF alpha, and Seq ALL), as well as total sleep time, sleep onset latency, and sleep efficiency. There were no serious adverse events. CONCLUSIONS: Results of this controlled clinical trial showed clinically relevant reduction of insomnia symptoms with HIRREM, over, and above an active, sham control, with associated, durable improvement in autonomic cardiovascular regulation.


Subject(s)
Sleep Initiation and Maintenance Disorders , Adult , Autonomic Nervous System , Baroreflex , Female , Heart Rate , Humans , Middle Aged , Quality of Life , Treatment Outcome
5.
Glob Adv Health Med ; 9: 2164956120923288, 2020.
Article in English | MEDLINE | ID: mdl-32426179

ABSTRACT

BACKGROUND: Law enforcement officers have decreased life expectancy, attributed to work-related exposure to traumatic stress and circadian disruption. Autonomic dysregulation is reported with traumatic stress and chronic insomnia. OBJECTIVE: We explore potential benefits for reduced symptoms related to stress and insomnia and improved autonomic function associated with open label use of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM®), in a cohort of sworn law enforcement personnel. METHODS: Closed-loop noninvasive therapies utilizing real-time monitoring offer a patient-centric approach for brain-based intervention. HIRREM® is a noninvasive, closed-loop, allostatic, neurotechnology that echoes specific brain frequencies in real time as audible tones to support self-optimization of brain rhythms. Self-report symptom inventories done before and after HIRREM included insomnia (ISI), depression (CES-D), traumatic stress (PCL-C), anxiety (GAD-7), perceived stress (PSS), and quality of life (EQ-5D). Ten-minute recordings of heart rate and blood pressure allowed analysis of baroreflex sensitivity (BRS) and heart rate variability (HRV). RESULTS: Fifteen participants (1 female), mean (SD) age 45.7 (5.6), received 12.2 (2.7) HIRREM sessions, over 7.9 in-office days. Data were collected at baseline, and at 22.8 (9.2), and 67.2 (14.1) days after intervention. All symptom inventories improved significantly (P < .01), with durability for 2 months after completion of the intervention. The use of HIRREM was also associated with significant increases (P < .001) in HRV measured as rMSSD and BRS measured by high-frequency alpha index. There were no serious adverse events or drop outs. CONCLUSION: These pilot data provide the first report of significant symptom reductions, and associated improvement in measures of autonomic cardiovascular regulation, with the use of HIRREM in a cohort of law enforcement personnel. Randomized clinical trials are warranted.

6.
Br J Nutr ; 124(2): 199-208, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32189605

ABSTRACT

We aimed to identify the association of hydration status with insulin resistance (IR) and body fat distribution. A total of 14 344 adults participated in the Korea National Health and Nutrition Examination Survey 2008-2010. We used urine specific gravity (USG) to indicate hydration status, and HOMA-IR (homoeostasis model assessment of IR) and trunk:leg fat ratio (TLR) as primary outcomes. In multivariate logistic regression, the OR per 0·01 increase in USG for high IR was 1·303 (95 % CI 1·185, 1·433; P < 0·001). In multivariate generalised additive model plots, increased USG showed a J-shaped association with logarithmic HOMA-IR, with the lowest Akaike's information criterion score of USG 1·030. Moreover, increased USG was independently associated with increased trunk fat, decreased leg fat and increased TLR. In mediation analysis, the proportion of mediation effects of USG on TLR via IR was 0·193 (95 % CI 0·132, 0·285; P < 0·001), while the proportion of mediation effects of USG on IR via TLR was 0·130 (95 % CI 0·086, 0·188; P < 0·001). Increased USG, a sign of low hydration status and presumably high vasopressin, was associated with IR and poor fat distribution. Direct effect of low hydration status may be more dominant than indirect effect via IR or fat distribution. Further studies are necessary to confirm our findings.

7.
Front Hum Neurosci ; 13: 129, 2019.
Article in English | MEDLINE | ID: mdl-31105539

ABSTRACT

There are two main paradigms for brain-related science, with different implications for brain-focused intervention or advancement. The paradigm of homeostasis ("stability through constancy," Walter Cannon), originating from laboratory-based experimental physiology pioneered by Claude Bernard, shows that living systems tend to maintain system functionality in the direction of constancy (or similitude). The aim of physiology is to elucidate the factors that maintain homeostasis, and therapeutics aim to correct abnormal factor functions. The homeostasis paradigm does not formally recognize influences outside its controlled experimental frames and it is variable in its modeling of neural contributions. The paradigm of allostatic orchestration (PAO) extends the principle of allostasis ("stability through change") as originally put forth by Peter Sterling. The PAO originates from an evolutionary perspective and recognizes that biological set points change in anticipation of changing environments. The brain is the organ of central command, orchestrating cross-system operations to support optimal behavior at the level of the whole organism. Alternative views of blood pressure regulation and posttraumatic stress disorder (PTSD) illustrate differences between the paradigms. For the PAO, complexities of top-down neural effects and environmental context are foundational (not to be "factored out"), and anticipatory regulation is the principle of their interface. The allostatic state represents the integrated totality of brain-body interactions. Health itself is an allostatic state of optimal anticipatory oscillation, hypothesized to relate to the state of criticality, a mathematical point of poise between phases, on the border between order and disorder (or the "edge of chaos"). Diseases are allostatic states of impaired anticipatory oscillations, demonstrated as rigidifications of set points across the brain and body (disease comorbidity). Conciliation of the paradigms is possible, with "reactive homeostasis" resolved as an illusion stemming from the anticipation of environmental monotony. Considerations are presented with respect to implications of the two paradigms for brain-focused intervention or advancement; the hypothesis that the state of criticality is a vehicle for evolutionary processes; concordance with a philosophy of freedom based on ethical individualism as well as self-creativity, non-obsolescence, empowerment, and citizenship; and concluding reflections on the science and ethics of the placebo, and the potential for virtuous cycles of brain-Anthropocene interactions.

8.
J Neuroimaging ; 29(1): 70-78, 2019 01.
Article in English | MEDLINE | ID: mdl-30302866

ABSTRACT

BACKGROUND AND PURPOSE: Post-traumatic stress disorder is associated with connectivity changes in the default mode, central executive, and salience networks, and other brain regions. This study evaluated changes in network connectivity associated with usage of High-resolution, relational, resonance-based electroencephalic mirroring (HIRREM® ; Brain State Technologies, Scottsdale, AZ), a closed-loop, allostatic, acoustic stimulation neurotechnology, for military-related traumatic stress. METHODS: Eighteen participants (17 males, mean age 41 years [SD = 7], 15 active duty) enrolled in an IRB approved pilot trial for symptoms of military-related traumatic stress. Participants received 19.5 (1.1) HIRREM sessions over 12 days. Symptoms, physiological and functional measures, and whole brain resting MRI were collected before and after HIRREM. Six whole brain functional networks were evaluated using summary variables and community structure of predefined networks. Pre to postintervention change was analyzed using paired-sample statistical tests. RESULTS: Postintervention, there was an overall increase in connectivity of the default mode network (P = .0094). There were decreases of community structure in both the anterior portion of the default mode (medial prefrontal cortex, P = .0097) and in the sensorimotor (P = .005) network. There were no statistically significant changes at the whole brain level, or in the central executive, salience, or other networks analyzed. Participants demonstrated significant improvements in clinical symptoms, as well as autonomic cardiovascular regulation, which have been reported previously. CONCLUSIONS: Use of closed-loop, allostatic, acoustic stimulation neurotechnology (HIRREM) was associated with connectivity changes in the default mode and sensorimotor networks, in directions that may have explained the subjects' clinical improvements.


Subject(s)
Brain/diagnostic imaging , Military Personnel , Nerve Net/diagnostic imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Acoustic Stimulation/methods , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged
9.
Front Public Health ; 6: 116, 2018.
Article in English | MEDLINE | ID: mdl-29922641

ABSTRACT

BACKGROUND: Heart rate variability (HRV) is an indicator of dynamic adaptability of the autonomic nervous system. Few interventions target upstream, cerebral cortex components of the heart-brain system for autonomic management. We report changes in HRV and baroreflex sensitivity (BRS), associated with use of a noninvasive, closed-loop, allostatic, computer-guided, acoustic stimulation neurotechnology. METHODS: Over 5 years, 220 subjects with heterogeneous neurological, cardiovascular, and psychophysiological conditions consecutively enrolled in a naturalistic, single-arm study exploring clinical effects associated with use of the neurotechnology. Of those, 202 completed the study protocol and 160 had recordings adequate to analyze HRV and BRS. Mean age was 44.0 (SD 19.4), with 130 women. Participants received a mean of 16.1 (5.2) sessions, over 24.2 days (23.3), with 9.5 (3.8) actual intervention days. Sessions included real-time analysis of brain electrical activity and software algorithm-guided translation of selected frequencies into patterns of acoustic stimulation (audible tones of variable pitch and timing), to facilitate auto-calibration of neural oscillations. Outcomes including 10-min supine, at-rest recordings of blood pressure and heart rate, and inventories for insomnia (ISI) and depression (CES-D or BDI-II), were obtained at baseline and 15.3 (16.7) days after the last session. RESULTS: Compared to baseline, significant increases (all p < 0.001) were observed for measures of HRV across all participants including the mean percentage change for SDNN 24.2% (SE 0.04), and RMSSD, 42.2% (0.08), and BRS [Sequence Up, 55.5% (0.09), Sequence Down, 77.6% (0.23), and Sequence All, 53.7% (0.07)]. Significant improvements were noted in SAP, MAP, and DAP, as well as natural log of HF, and total power. Self-reported ISI was reduced (ISI, -6.4 points, SD 5.6, p < 0.001). The proportion reporting clinically significant depressive symptoms reduced from 48.2% at baseline to 22.1% at follow-up. Linear regression showed that rightward asymmetry predicted lower SDNN (p = 0.02). Exploratory analysis showed a trend for improved balance of temporal lobe high-frequency amplitudes over the course of initial sessions. CONCLUSION: These findings indicate that use of a noninvasive, allostatic, closed-loop neurotechnology appears to have robust potential for public health efforts to support greater flexibility in autonomic cardiovascular regulation, through self-optimization of electrical activity at the level of the brain.

10.
N Engl J Med ; 378(19): 1851-2, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29745938
SELECTION OF CITATIONS
SEARCH DETAIL