Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Clin Cancer Res ; 30(13): 2812-2821, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38639918

ABSTRACT

PURPOSE: Given its heterogeneity and diverse clinical outcomes, precise subclassification of Barcelona Clinic Liver Cancer stage C (BCLC-C) hepatocellular carcinoma (HCC) is required for appropriately determining patient prognosis and selecting treatment. EXPERIMENTAL DESIGN: We recruited 2,626 patients with BCLC-C HCC from multiple centers, comprising training/test (n = 1,693) and validation cohorts (n = 933). The XGBoost model was chosen for maximum performance among the machine learning (ML) models. Patients were categorized into low-, intermediate-, high-, and very high-risk subgroups based on the estimated prognosis, and this subclassification was named the CLAssification via Machine learning of BCLC-C (CLAM-C). RESULTS: The areas under the receiver operating characteristic curve of the CLAM-C for predicting the 6-, 12-, and 24-month survival of patients with BCLC-C were 0.800, 0.831, and 0.715, respectively-significantly higher than those of the conventional models, which were consistent in the validation cohort. The four subgroups had significantly different median overall survivals, and this difference was maintained among various patient subgroups and treatment modalities. Immune-checkpoint inhibitors and transarterial therapies were associated with significantly better survival than tyrosine kinase inhibitors (TKI) in the low- and intermediate-risk subgroups. In cases with first-line systemic therapy, the CLAM-C identified atezolizumab-bevacizumab as the best therapy, particularly in the high-risk group. In cases with later-line systemic therapy, nivolumab had better survival than TKIs in the low-to-intermediate-risk subgroup, whereas TKIs had better survival in the high- to very high-risk subgroup. CONCLUSIONS: ML modeling effectively subclassified patients with BCLC-C HCC, potentially aiding treatment allocation. Our study underscores the potential utilization of ML modeling in terms of prognostication and treatment allocation in patients with BCLC-C HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Machine Learning , Humans , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/diagnosis , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/diagnosis , Female , Male , Prognosis , Middle Aged , Aged , Neoplasm Staging , Algorithms , ROC Curve , Adult
2.
J Neuroimaging ; 31(2): 287-296, 2021 03.
Article in English | MEDLINE | ID: mdl-33406294

ABSTRACT

BACKGROUND AND PURPOSE: Brain asymmetries are reported in posttraumatic stress disorder, but many aspects of laterality and traumatic stress remain underexplored. This study explores lateralization changes in resting state brain network functional connectivity in a cohort with symptoms of military-related traumatic stress, associated with use of a closed-loop neurotechnology, HIRREM. METHODS: Eighteen participants (17 males, mean age 41 years [SD = 7]) received 19.5 (1.1) HIRREM sessions over 12 days. Whole brain resting magnetic resonance imaging was done pre- and post-HIRREM. Laterality of functional connectivity was assessed on a whole brain basis, and in six predefined networks or regions. Laterality of connectivity within networks or regions was assessed separately from laterality of connections between networks or regions. RESULTS: Before HIRREM, significant laterality effects of connection type (ipsilateral for either side, or contralateral in either direction) were observed for the whole brain, within networks or regions, and between networks or regions. Post-HIRREM, there were significant changes for within-network or within-region analysis in the motor network, and changes for between-network or between-region analyses for the salience network and the motor cortex. CONCLUSIONS: Among military service members and Veterans with symptoms of traumatic stress, asymmetries of network and brain region connectivity patterns were identified prior to usage of HIRREM. A variety of changes in lateralized patterns of brain connectivity were identified postintervention. These laterality findings may inform future studies of brain connectivity in traumatic stress disorders, with potential to point to mechanisms of action for successful intervention.


Subject(s)
Brain/physiopathology , Functional Laterality , Military Personnel/psychology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Rest , Stress Disorders, Post-Traumatic/diagnostic imaging , Veterans
3.
Andrology ; 9(3): 933-943, 2021 05.
Article in English | MEDLINE | ID: mdl-33420748

ABSTRACT

BACKGROUND: Relaxation of prostate smooth muscle tone is a key strategy for the medical treatment of lower urinary tract symptoms (LUTS) in men. However, potassium channel's physiological role inhuman prostatic smooth muscle (HPrSM) has yet to be determined. OBJECTIVES: In this study, we examined the molecular characteristics and physiological roles of Kv7 channels in HPrSM. MATERIALS AND METHODS: The expressions of KCNQ1-5 (Kv7 channel pore-forming α-subunits) and KCNE1-5 (ß-regulatory subunits) isoforms in HPrSM were examined using real-time PCR. The relaxation effect of ML213 was investigated by cumulatively adding ML213 to the prostate strips. Kv7 currents were recorded using an amphotericin-B perforated patch-clamp technique. RESULTS: In HPrSM cells, KCNQ4, KCNQ5, and KCNE4 isoforms were predominantly expressed, while KCNQ1, KCNQ5, and KCNE3 isoforms were the most abundantly expressed in human prostatic tissues. Western blot analysis revealed the protein expression of the Kv7.1, 7.4, and 7.5 channel subtypes in human prostate tissues (n = 3). ML213 (an activator of Kv7.2/7.4/7.5) induced the concentration-dependent relaxation of HPrSM strips (n = 15, p = 0.001), and this effect was attenuated by pretreatment with XE991 (a Kv7.1-7.5 blocker). In electrophysiology studies, ML213 significantly increased the amplitude of whole-cell Kv7 currents in HPrSM cells. ML213-induced outward currents were greater than retigabine (a Kv7.2-7.5 channel activator). The subsequent addition of XE991 completely inhibited the ML213-induced currents (n = 9, p < 0.01 vs. ML213). ML213 hyperpolarized the HPrSM cell membrane potential and was fully reversed by XE991. In situ PLA revealed the colocalization of heteromeric KV7.4/KV7.5 channels in HPrSM cells. CONCLUSIONS: Our findings suggest that Kv7.4 and 7.5 channels in prostatic smooth muscle play a critical role in the regulation of HPrSM tone and that Kv7 channel subtypes may be novel therapeutic targets for the treatment of LUTS associated with BPH.


Subject(s)
Muscle, Smooth/metabolism , Potassium Channels, Voltage-Gated/metabolism , Prostate/metabolism , Anilides , Bridged Bicyclo Compounds , Cell Line , Humans , In Vitro Techniques , Male , Potassium Channels, Voltage-Gated/genetics
4.
Brain Behav ; 10(11): e01826, 2020 11.
Article in English | MEDLINE | ID: mdl-32940419

ABSTRACT

INTRODUCTION: Effective insomnia interventions that also address autonomic dysregulation are lacking. We evaluate high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM® ), in a randomized, controlled clinical trial. HIRREM is a noninvasive, closed-loop, allostatic, acoustic stimulation neurotechnology, to support self-optimization of brain rhythms. METHODS: One hundred and seven adults (mean age 45.7, SD ± 5.6, 73 women), with Insomnia Severity Index (ISI) scores of ≥15, received ten, 90-min sessions of HIRREM, with tones linked to brainwaves (LB, 56), or random tones not linked to brainwaves (NL, 51), as an active, sham placebo. Outcomes were obtained at enrollment (V1), 1-7 days (V2), 8-10 weeks (V3), and 16-18 weeks (V4) after intervention. Primary outcome was differential change in ISI from V1 to V3. Secondary measures assessed depression (BDI), anxiety (BAI), quality of life (EQ-5D), and a sleep diary. Ten minute recordings of HR and BP allowed analysis of heart rate variability (HRV) and baroreflex sensitivity (BRS). RESULTS: Of 107 randomized, 101 completed the intervention. Intention-to-treat analysis (107) of change from V1 to V3 revealed a mean reduction of ISI in NL of -4.93 (SE ± 0.76) points, with additional, significant reduction of -2.05 points (0.74) in LB (total reduction of -6.98, p = .045). Additional reduction of -2.30 points (0.76) was still present in the LB at V4 (p = .058). Total ISI reduction from V1 to V4 was -5.90 points for NL and -7.93 points in LB. There were group differences (p < .05) for multiple HRV and BRS measures (rMSSD, SDNN, HF alpha, and Seq ALL), as well as total sleep time, sleep onset latency, and sleep efficiency. There were no serious adverse events. CONCLUSIONS: Results of this controlled clinical trial showed clinically relevant reduction of insomnia symptoms with HIRREM, over, and above an active, sham control, with associated, durable improvement in autonomic cardiovascular regulation.


Subject(s)
Sleep Initiation and Maintenance Disorders , Adult , Autonomic Nervous System , Baroreflex , Female , Heart Rate , Humans , Middle Aged , Quality of Life , Treatment Outcome
5.
Glob Adv Health Med ; 9: 2164956120923288, 2020.
Article in English | MEDLINE | ID: mdl-32426179

ABSTRACT

BACKGROUND: Law enforcement officers have decreased life expectancy, attributed to work-related exposure to traumatic stress and circadian disruption. Autonomic dysregulation is reported with traumatic stress and chronic insomnia. OBJECTIVE: We explore potential benefits for reduced symptoms related to stress and insomnia and improved autonomic function associated with open label use of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM®), in a cohort of sworn law enforcement personnel. METHODS: Closed-loop noninvasive therapies utilizing real-time monitoring offer a patient-centric approach for brain-based intervention. HIRREM® is a noninvasive, closed-loop, allostatic, neurotechnology that echoes specific brain frequencies in real time as audible tones to support self-optimization of brain rhythms. Self-report symptom inventories done before and after HIRREM included insomnia (ISI), depression (CES-D), traumatic stress (PCL-C), anxiety (GAD-7), perceived stress (PSS), and quality of life (EQ-5D). Ten-minute recordings of heart rate and blood pressure allowed analysis of baroreflex sensitivity (BRS) and heart rate variability (HRV). RESULTS: Fifteen participants (1 female), mean (SD) age 45.7 (5.6), received 12.2 (2.7) HIRREM sessions, over 7.9 in-office days. Data were collected at baseline, and at 22.8 (9.2), and 67.2 (14.1) days after intervention. All symptom inventories improved significantly (P < .01), with durability for 2 months after completion of the intervention. The use of HIRREM was also associated with significant increases (P < .001) in HRV measured as rMSSD and BRS measured by high-frequency alpha index. There were no serious adverse events or drop outs. CONCLUSION: These pilot data provide the first report of significant symptom reductions, and associated improvement in measures of autonomic cardiovascular regulation, with the use of HIRREM in a cohort of law enforcement personnel. Randomized clinical trials are warranted.

6.
Br J Nutr ; 124(2): 199-208, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32189605

ABSTRACT

We aimed to identify the association of hydration status with insulin resistance (IR) and body fat distribution. A total of 14 344 adults participated in the Korea National Health and Nutrition Examination Survey 2008-2010. We used urine specific gravity (USG) to indicate hydration status, and HOMA-IR (homoeostasis model assessment of IR) and trunk:leg fat ratio (TLR) as primary outcomes. In multivariate logistic regression, the OR per 0·01 increase in USG for high IR was 1·303 (95 % CI 1·185, 1·433; P < 0·001). In multivariate generalised additive model plots, increased USG showed a J-shaped association with logarithmic HOMA-IR, with the lowest Akaike's information criterion score of USG 1·030. Moreover, increased USG was independently associated with increased trunk fat, decreased leg fat and increased TLR. In mediation analysis, the proportion of mediation effects of USG on TLR via IR was 0·193 (95 % CI 0·132, 0·285; P < 0·001), while the proportion of mediation effects of USG on IR via TLR was 0·130 (95 % CI 0·086, 0·188; P < 0·001). Increased USG, a sign of low hydration status and presumably high vasopressin, was associated with IR and poor fat distribution. Direct effect of low hydration status may be more dominant than indirect effect via IR or fat distribution. Further studies are necessary to confirm our findings.

7.
Front Hum Neurosci ; 13: 129, 2019.
Article in English | MEDLINE | ID: mdl-31105539

ABSTRACT

There are two main paradigms for brain-related science, with different implications for brain-focused intervention or advancement. The paradigm of homeostasis ("stability through constancy," Walter Cannon), originating from laboratory-based experimental physiology pioneered by Claude Bernard, shows that living systems tend to maintain system functionality in the direction of constancy (or similitude). The aim of physiology is to elucidate the factors that maintain homeostasis, and therapeutics aim to correct abnormal factor functions. The homeostasis paradigm does not formally recognize influences outside its controlled experimental frames and it is variable in its modeling of neural contributions. The paradigm of allostatic orchestration (PAO) extends the principle of allostasis ("stability through change") as originally put forth by Peter Sterling. The PAO originates from an evolutionary perspective and recognizes that biological set points change in anticipation of changing environments. The brain is the organ of central command, orchestrating cross-system operations to support optimal behavior at the level of the whole organism. Alternative views of blood pressure regulation and posttraumatic stress disorder (PTSD) illustrate differences between the paradigms. For the PAO, complexities of top-down neural effects and environmental context are foundational (not to be "factored out"), and anticipatory regulation is the principle of their interface. The allostatic state represents the integrated totality of brain-body interactions. Health itself is an allostatic state of optimal anticipatory oscillation, hypothesized to relate to the state of criticality, a mathematical point of poise between phases, on the border between order and disorder (or the "edge of chaos"). Diseases are allostatic states of impaired anticipatory oscillations, demonstrated as rigidifications of set points across the brain and body (disease comorbidity). Conciliation of the paradigms is possible, with "reactive homeostasis" resolved as an illusion stemming from the anticipation of environmental monotony. Considerations are presented with respect to implications of the two paradigms for brain-focused intervention or advancement; the hypothesis that the state of criticality is a vehicle for evolutionary processes; concordance with a philosophy of freedom based on ethical individualism as well as self-creativity, non-obsolescence, empowerment, and citizenship; and concluding reflections on the science and ethics of the placebo, and the potential for virtuous cycles of brain-Anthropocene interactions.

8.
J Neuroimaging ; 29(1): 70-78, 2019 01.
Article in English | MEDLINE | ID: mdl-30302866

ABSTRACT

BACKGROUND AND PURPOSE: Post-traumatic stress disorder is associated with connectivity changes in the default mode, central executive, and salience networks, and other brain regions. This study evaluated changes in network connectivity associated with usage of High-resolution, relational, resonance-based electroencephalic mirroring (HIRREM® ; Brain State Technologies, Scottsdale, AZ), a closed-loop, allostatic, acoustic stimulation neurotechnology, for military-related traumatic stress. METHODS: Eighteen participants (17 males, mean age 41 years [SD = 7], 15 active duty) enrolled in an IRB approved pilot trial for symptoms of military-related traumatic stress. Participants received 19.5 (1.1) HIRREM sessions over 12 days. Symptoms, physiological and functional measures, and whole brain resting MRI were collected before and after HIRREM. Six whole brain functional networks were evaluated using summary variables and community structure of predefined networks. Pre to postintervention change was analyzed using paired-sample statistical tests. RESULTS: Postintervention, there was an overall increase in connectivity of the default mode network (P = .0094). There were decreases of community structure in both the anterior portion of the default mode (medial prefrontal cortex, P = .0097) and in the sensorimotor (P = .005) network. There were no statistically significant changes at the whole brain level, or in the central executive, salience, or other networks analyzed. Participants demonstrated significant improvements in clinical symptoms, as well as autonomic cardiovascular regulation, which have been reported previously. CONCLUSIONS: Use of closed-loop, allostatic, acoustic stimulation neurotechnology (HIRREM) was associated with connectivity changes in the default mode and sensorimotor networks, in directions that may have explained the subjects' clinical improvements.


Subject(s)
Brain/diagnostic imaging , Military Personnel , Nerve Net/diagnostic imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Acoustic Stimulation/methods , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged
9.
Front Public Health ; 6: 116, 2018.
Article in English | MEDLINE | ID: mdl-29922641

ABSTRACT

BACKGROUND: Heart rate variability (HRV) is an indicator of dynamic adaptability of the autonomic nervous system. Few interventions target upstream, cerebral cortex components of the heart-brain system for autonomic management. We report changes in HRV and baroreflex sensitivity (BRS), associated with use of a noninvasive, closed-loop, allostatic, computer-guided, acoustic stimulation neurotechnology. METHODS: Over 5 years, 220 subjects with heterogeneous neurological, cardiovascular, and psychophysiological conditions consecutively enrolled in a naturalistic, single-arm study exploring clinical effects associated with use of the neurotechnology. Of those, 202 completed the study protocol and 160 had recordings adequate to analyze HRV and BRS. Mean age was 44.0 (SD 19.4), with 130 women. Participants received a mean of 16.1 (5.2) sessions, over 24.2 days (23.3), with 9.5 (3.8) actual intervention days. Sessions included real-time analysis of brain electrical activity and software algorithm-guided translation of selected frequencies into patterns of acoustic stimulation (audible tones of variable pitch and timing), to facilitate auto-calibration of neural oscillations. Outcomes including 10-min supine, at-rest recordings of blood pressure and heart rate, and inventories for insomnia (ISI) and depression (CES-D or BDI-II), were obtained at baseline and 15.3 (16.7) days after the last session. RESULTS: Compared to baseline, significant increases (all p < 0.001) were observed for measures of HRV across all participants including the mean percentage change for SDNN 24.2% (SE 0.04), and RMSSD, 42.2% (0.08), and BRS [Sequence Up, 55.5% (0.09), Sequence Down, 77.6% (0.23), and Sequence All, 53.7% (0.07)]. Significant improvements were noted in SAP, MAP, and DAP, as well as natural log of HF, and total power. Self-reported ISI was reduced (ISI, -6.4 points, SD 5.6, p < 0.001). The proportion reporting clinically significant depressive symptoms reduced from 48.2% at baseline to 22.1% at follow-up. Linear regression showed that rightward asymmetry predicted lower SDNN (p = 0.02). Exploratory analysis showed a trend for improved balance of temporal lobe high-frequency amplitudes over the course of initial sessions. CONCLUSION: These findings indicate that use of a noninvasive, allostatic, closed-loop neurotechnology appears to have robust potential for public health efforts to support greater flexibility in autonomic cardiovascular regulation, through self-optimization of electrical activity at the level of the brain.

10.
N Engl J Med ; 378(19): 1851-2, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29745938
11.
BMC Psychiatry ; 17(1): 141, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28420362

ABSTRACT

BACKGROUND: The objective of this pilot study was to explore the use of a closed-loop, allostatic, acoustic stimulation neurotechnology for individuals with self-reported symptoms of post-traumatic stress, as a potential means to impact symptomatology, temporal lobe high frequency asymmetry, heart rate variability (HRV), and baroreflex sensitivity (BRS). METHODS: From a cohort of individuals participating in a naturalistic study to evaluate use of allostatic neurotechnology for diverse clinical conditions, a subset was identified who reported high scores on the Posttraumatic Stress Disorder Checklist (PCL). The intervention entailed a series of sessions wherein brain electrical activity was monitored noninvasively at high spectral resolutions, with software algorithms translating selected brain frequencies into acoustic stimuli (audible tones) that were delivered back to the user in real time, to support auto-calibration of neural oscillations. Participants completed symptom inventories before and after the intervention, and a subset underwent short-term blood pressure recordings for HRV and BRS. Changes in temporal lobe high frequency asymmetry were analyzed from baseline assessment through the first four sessions, and for the last four sessions. RESULTS: Nineteen individuals (mean age 47, 11 women) were enrolled, and the majority also reported symptom scores that exceeded inventory thresholds for depression. They undertook a median of 16 sessions over 16.5 days, and 18 completed the number of sessions recommended. After the intervention, 89% of the completers reported clinically significant decreases in post-traumatic stress symptoms, indicated by a change of at least 10 points on the PCL. At a group level, individuals with either rightward (n = 7) or leftward (n = 7) dominant baseline asymmetry in temporal lobe high frequency (23-36 Hz) activity demonstrated statistically significant reductions in their asymmetry scores over the course of their first four sessions. For 12 individuals who underwent short-term blood pressure recordings, there were statistically significant increases in HRV in the time domain and BRS (Sequence Up). There were no adverse events. CONCLUSION: Closed-loop, allostatic neurotechnology for auto-calibration of neural oscillations appears promising as an innovative therapeutic strategy for individuals with symptoms of post-traumatic stress. TRIALS REGISTRATION: ClinicalTrials.gov #NCT02709369 , retrospectively registered on March 4, 2016.


Subject(s)
Acoustic Stimulation/methods , Allostasis/physiology , Self Report , Stress Disorders, Post-Traumatic/therapy , Temporal Lobe/physiology , Adult , Autonomic Nervous System/physiopathology , Baroreflex , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Pilot Projects , Research Design
12.
Mil Med Res ; 4(1): 38, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29502530

ABSTRACT

BACKGROUND: Military-related post-traumatic stress (PTS) is associated with numerous symptom clusters and diminished autonomic cardiovascular regulation. High-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM®) is a noninvasive, closed-loop, allostatic, acoustic stimulation neurotechnology that produces real-time translation of dominant brain frequencies into audible tones of variable pitch and timing to support the auto-calibration of neural oscillations. We report clinical, autonomic, and functional effects after the use of HIRREM® for symptoms of military-related PTS. METHODS: Eighteen service members or recent veterans (15 active-duty, 3 veterans, most from special operations, 1 female), with a mean age of 40.9 (SD = 6.9) years and symptoms of PTS lasting from 1 to 25 years, undertook 19.5 (SD = 1.1) sessions over 12 days. Inventories for symptoms of PTS (Posttraumatic Stress Disorder Checklist - Military version, PCL-M), insomnia (Insomnia Severity Index, ISI), depression (Center for Epidemiologic Studies Depression Scale, CES-D), and anxiety (Generalized Anxiety Disorder 7-item scale, GAD-7) were collected before (Visit 1, V1), immediately after (Visit 2, V2), and at 1 month (Visit 3, V3), 3 (Visit 4, V4), and 6 (Visit 5, V5) months after intervention completion. Other measures only taken at V1 and V2 included blood pressure and heart rate recordings to analyze heart rate variability (HRV) and baroreflex sensitivity (BRS), functional performance (reaction and grip strength) testing, blood and saliva for biomarkers of stress and inflammation, and blood for epigenetic testing. Paired t-tests, Wilcoxon signed-rank tests, and a repeated-measures ANOVA were performed. RESULTS: Clinically relevant, significant reductions in all symptom scores were observed at V2, with durability through V5. There were significant improvements in multiple measures of HRV and BRS [Standard deviation of the normal beat to normal beat interval (SDNN), root mean square of the successive differences (rMSSD), high frequency (HF), low frequency (LF), and total power, HF alpha, sequence all, and systolic, diastolic and mean arterial pressure] as well as reaction testing. Trends were seen for improved grip strength and a reduction in C-Reactive Protein (CRP), Angiotensin II to Angiotensin 1-7 ratio and Interleukin-10, with no change in DNA n-methylation. There were no dropouts or adverse events reported. CONCLUSIONS: Service members or veterans showed reductions in symptomatology of PTS, insomnia, depressive mood, and anxiety that were durable through 6 months after the use of a closed-loop allostatic neurotechnology for the auto-calibration of neural oscillations. This study is the first to report increased HRV or BRS after the use of an intervention for service members or veterans with PTS. Ongoing investigations are strongly warranted. TRIAL REGISTRATION: NCT03230890 , retrospectively registered July 25, 2017.


Subject(s)
Electroencephalography/methods , Military Personnel/psychology , Self Report , Stress Disorders, Post-Traumatic/complications , Adult , Allostasis/physiology , Angiotensin I/analysis , Angiotensin I/blood , Angiotensin II/analysis , Angiotensin II/blood , Biomarkers/analysis , Biomarkers/blood , C-Reactive Protein/analysis , Epinephrine/analysis , Epinephrine/blood , Heart Rate/physiology , Humans , Interleukin-1/analysis , Interleukin-1/blood , Interleukin-10/analysis , Interleukin-10/blood , Interleukin-6/analysis , Interleukin-6/blood , Male , Middle Aged , Military Personnel/statistics & numerical data , Monitoring, Physiologic/methods , Norepinephrine/analysis , Norepinephrine/blood , North Carolina , Peptide Fragments/analysis , Peptide Fragments/blood , Pilot Projects , Stress Disorders, Post-Traumatic/psychology , Vasopressins/analysis , Vasopressins/blood , Veterans/psychology , Veterans/statistics & numerical data
13.
Sports Med Open ; 2(1): 39, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27747793

ABSTRACT

BACKGROUND: Effective interventions are needed for individuals with persisting post-concussion symptoms. High-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM®) is an allostatic, closed-loop, acoustic stimulation neurotechnology, designed to facilitate relaxation and self-optimization of neural oscillations. METHODS: Fifteen athletes (seven females, mean age 18.1 years, SD 2.6) with persisting post-concussion symptoms received 18.7 (SD 6.0) HIRREM sessions over a mean of 29.6 (SD 23.2) days, including 11.3 (SD 4.6) in office days. Pre- and post-HIRREM measures included the Rivermead Post-Concussion Symptoms Questionnaire (RPQ, n = 12), the Insomnia Severity Index (ISI, n = 15), the Center for Epidemiologic Studies Depression Scale (CES-D, n = 10), short-term blood pressure and heart rate recordings for measures of autonomic cardiovascular regulation (n = 15), and reaction time by the drop-stick method (n = 7). All participants were asked about their physical activity level and sports participation status at their post-HIRREM data collection visit and 1 to 3 months afterward. RESULTS: At the post-HIRREM visit, subjects reported improvements in all three inventories (RPQ mean change 19.7, SD 11.4, Wilcoxon p = 0.001; ISI mean change -4.1, SD 4.1, Wilcoxon p = 0.003; CES-D mean change -12.0, SD 10.0, Wilcoxon p = 0.004), including statistically significant reductions in 14 of the 16 individual items of the RPQ. There were also statistically significant improvements in baroreflex sensitivity, heart rate variability in the time domain (SDNN), and drop-stick reaction testing (baseline mean distance of 23.8 cm, SD 5.6, decreased to 19.8 cm, SD 4.6, Wilcoxon p = 0.016). Within 3 months of the post-HIRREM data collection, all 15 had returned to full exercise and workouts, and ten had returned to full participation in their athletic activity. CONCLUSIONS: The use of HIRREM by a series of athletes with persisting post-concussion symptoms was associated with a range of improvements including, for the majority, return to full participation in their sport. The findings do not appear to be consistent with constituents of the placebo effect. A larger controlled trial is warranted.

14.
Exp Brain Res ; 234(3): 791-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26645307

ABSTRACT

Autonomic dysregulation and heterogeneous symptoms characterize postural orthostatic tachycardia syndrome (POTS). This study evaluated the effect of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM(®)), a noninvasive, allostatic neurotechnology for relaxation and auto-calibration of neural oscillations, on heart rate variability, brain asymmetry, and autonomic symptoms, in adolescents with POTS. Seven subjects with POTS (three males, ages 15-18) underwent a median of 14 (10-16) HIRREM sessions over 13 (8-17) days. Autonomic function was assessed from 10-min continuous heart rate and blood pressure recordings, pre- and post-HIRREM. One-minute epochs of temporal high-frequency (23-36 Hz) brain electrical activity data (T3 and T4, eyes closed) were analyzed from baseline HIRREM assessment and subsequent sessions. Subjects rated autonomic symptoms before and after HIRREM. Four of seven were on fludrocortisone, which was stopped before or during their sessions. Heart rate variability in the time domain (standard deviation of the beat-to-beat interval) increased post-HIRREM (mean increase 51%, range 10-143, p = 0.03), as did baroreflex sensitivity (mean increase in high-frequency alpha 65%, range -6 to 180, p = 0.05). Baseline temporal electrical asymmetry negatively correlated with change in asymmetry from assessment to the final HIRREM session (p = 0.01). Summed high-frequency amplitudes at left and right temporal lobes decreased a median of 3.8 µV (p = 0.02). There was a trend for improvements in self-reported symptoms related to the autonomic nervous system. Use of HIRREM was associated with reduced sympathetic bias in autonomic cardiovascular regulation, greater symmetry and reduced amplitudes in temporal lobe high-frequency electrical activity, and a trend for reduced autonomic symptoms. Data suggest the potential for allostatic neurotechnology to facilitate increased flexibility in autonomic cardiovascular regulation, possibly through more balanced activity at regions of the neocortex responsible for autonomic management. Clinical trial registry "Tilt Table with Suspected postural orthostatic tachycardia syndrome (POTS) Subjects," Protocol Record: WFUBAHA01.


Subject(s)
Allostasis/physiology , Heart Rate/physiology , Postural Orthostatic Tachycardia Syndrome/diagnosis , Temporal Lobe/physiology , Tilt-Table Test/methods , Acoustic Stimulation/methods , Adolescent , Baroreflex/physiology , Female , Humans , Male , Pilot Projects , Postural Orthostatic Tachycardia Syndrome/physiopathology , Posture/physiology
15.
Front Psychol ; 6: 1224, 2015.
Article in English | MEDLINE | ID: mdl-26347688

ABSTRACT

We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger's syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century.

16.
Brain Behav ; 5(6): e00343, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26085968

ABSTRACT

OBJECTIVE: Explore potential use of a temporal lobe electrical asymmetry score to discriminate between sympathetic and parasympathetic tendencies in autonomic cardiovascular regulation. METHODS: 131 individuals (82 women, mean age 43.1, range 13-83) with diverse clinical conditions completed inventories for depressive (CES-D or BDI-II) and insomnia-related (ISI) symptomatology, and underwent five-minute recordings of heart rate and blood pressure, allowing calculation of heart rate variability and baroreflex sensitivity (BRS), followed by one-minute, two-channel, eyes-closed scalp recordings of brain electrical activity. A temporal lobe high-frequency (23-36 Hz) electrical asymmetry score was calculated for each subject by subtracting the average amplitude in the left temporal region from amplitude in the right temporal region, and dividing by the lesser of the two. RESULTS: Depressive and insomnia-related symptomatology exceeding clinical threshold levels were reported by 48% and 50% of subjects, respectively. Using a cutoff value of 5% or greater to define temporal high-frequency asymmetry, subjects with leftward compared to rightward asymmetry were more likely to report use of a sedative-hypnotic medication (42% vs. 22%, P = 0.02). Among subjects with asymmetry of 5% or greater to 30% or greater, those with rightward compared to leftward temporal high-frequency asymmetry had higher resting heart rate (≥5% asymmetry, 72.3 vs. 63.8, P = 0.004; ≥10%, 71.5 vs. 63.0, P = 0.01; ≥20%, 72.2 vs. 64.2, P = 0.05; ≥30%, 71.4 vs. 64.6, P = 0.05). Subjects with larger degrees of rightward compared to leftward temporal high-frequency asymmetry had lower baroreflex sensitivity (≥40% asymmetry, 10.6 vs. 16.4, P = 0.03; ≥50% asymmetry, 10.4 vs. 16.7, P = 0.05). CONCLUSION: In a heterogeneous population, individuals with rightward compared to leftward temporal high-frequency electrical asymmetry had higher resting heart rate and lower BRS. Two-channel recording of brain electrical activity from bilateral temporal regions appears to hold promise for further investigation as a means to assess cortical activity associated with autonomic cardiovascular regulation.


Subject(s)
Autonomic Nervous System/physiopathology , Baroreflex/physiology , Depression , Dominance, Cerebral/physiology , Sleep Initiation and Maintenance Disorders , Temporal Lobe/physiopathology , Adolescent , Adult , Aged, 80 and over , Blood Pressure/physiology , Depression/diagnosis , Depression/physiopathology , Female , Heart Rate/physiology , Humans , Male , Neurophysiology/methods , Sleep Initiation and Maintenance Disorders/diagnosis , Sleep Initiation and Maintenance Disorders/physiopathology
17.
Menopause ; 22(6): 650-5, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25668305

ABSTRACT

OBJECTIVE: Increased amplitudes in high-frequency brain electrical activity are reported with menopausal hot flashes. We report outcomes associated with the use of High-resolution, relational, resonance-based, electroencephalic mirroring--a noninvasive neurotechnology for autocalibration of neural oscillations--by women with perimenopausal and postmenopausal hot flashes. METHODS: Twelve women with hot flashes (median age, 56 y; range, 46-69 y) underwent a median of 13 (range, 8-23) intervention sessions for a median of 9.5 days (range, 4-32). This intervention uses algorithmic analysis of brain electrical activity and near real-time translation of brain frequencies into variable tones for acoustic stimulation. Hot flash frequency and severity were recorded by daily diary. Primary outcomes included hot flash severity score, sleep, and depressive symptoms. High-frequency amplitudes (23-36 Hz) from bilateral temporal scalp recordings were measured at baseline and during serial sessions. Self-reported symptom inventories for sleep and depressive symptoms were collected. RESULTS: The median change in hot flash severity score was -0.97 (range, -3.00 to 1.00; P = 0.015). Sleep and depression scores decreased by -8.5 points (range, -20 to -1; P = 0.022) and -5.5 points (range, -32 to 8; P = 0.015), respectively. The median sum of amplitudes for the right and left temporal high-frequency brain electrical activity was 8.44 µV (range, 6.27-16.66) at baseline and decreased by a median of -2.96 µV (range, -11.05 to -0.65; P = 0.0005) by the final session. CONCLUSIONS: Hot flash frequency and severity, symptoms of insomnia and depression, and temporal high-frequency brain electrical activity decrease after High-resolution, relational, resonance-based, electroencephalic mirroring. Larger controlled trials with longer follow-up are warranted.


Subject(s)
Acoustic Stimulation/methods , Brain Waves/physiology , Electric Stimulation/methods , Hot Flashes/therapy , Neural Pathways/physiology , Female , Humans , Menopause , Middle Aged , Severity of Illness Index , Treatment Outcome
18.
Front Psychol ; 5: 843, 2014.
Article in English | MEDLINE | ID: mdl-25136325

ABSTRACT

A bihemispheric autonomic model (BHAM) may support advanced understanding of traumatic stress effects on physiology and behavior. The model builds on established data showing hemispheric lateralization in management of the autonomic nervous system, and proposes that traumatic stress can produce dominant asymmetry in activity of bilateral homologous brain regions responsible for autonomic management. Rightward and leftward dominant asymmetries are associated with sympathetic high arousal or parasympathetic freeze tendencies, respectively, and return to relative symmetry is associated with improved autonomic regulation. Autonomic auto-calibration for recovery (inverse of Jacksonian dissolution proposed by polyvagal theory) has implications for risk behaviors associated with traumatic life stress. Trauma-induced high arousal may be associated with risk for maladaptive behaviors to attenuate arousal (including abuse of alcohol or sedative-hypnotics). Trauma-induced freeze mode (including callous-unemotional trait) may be associated with low resting heart rate and risk for conduct disorders. The model may explain higher prevalence of leftward hemispheric abnormalities reported in studies of violence. Implications of the BHAM are illustrated through case examples of a military special operations officer with history of traumatic brain injury and post-traumatic stress disorder, and a university student with persisting post-concussion symptoms. Both undertook use of a noninvasive closed-loop neurotechnology - high-resolution, relational, resonance-based, electroencephalic mirroring - with ensuing decrease in hemispheric asymmetry, improvement in heart rate variability, and symptom reduction. Finally, the BHAM aligns with calls for researchers to use brain-behavioral constructs (research domain criteria or RDoC, proposed by the National Institutes of Mental Health) as building blocks for assessment and intervention in mental health science.

20.
Brain Behav ; 3(2): 193-205, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23532171

ABSTRACT

Disturbances of neural oscillation patterns have been reported with many disease states. We introduce methodology for HIRREM™ (high-resolution, relational, resonance-based electroencephalic mirroring), also known as Brainwave Optimization™, a noninvasive technology to facilitate relaxation and auto-calibration of neural oscillations. HIRREM is a precision-guided technology for allostatic therapeutics, intended to help the brain calibrate its own functional set points to optimize fitness. HIRREM technology collects electroencephalic data through two-channel recordings and delivers a series of audible musical tones in near real time. Choices of tone pitch and timing are made by mathematical algorithms, principally informed by the dominant frequency in successive instants of time, to permit resonance between neural oscillatory frequencies and the musical tones. Relaxation of neural oscillations through HIRREM appears to permit auto-calibration toward greater hemispheric symmetry and more optimized proportionation of regional spectral power. To illustrate an application of HIRREM, we present data from a randomized clinical trial of HIRREM as an intervention for insomnia (n = 19). On average, there was reduction of right-dominant temporal lobe high-frequency (23-36 Hz) EEG asymmetry over the course of eight successive HIRREM sessions. There was a trend for correlation between reduction of right temporal lobe dominance and magnitude of insomnia symptom reduction. Disturbances of neural oscillation have implications for both neuropsychiatric health and downstream peripheral (somatic) physiology. The possibility of noninvasive optimization for neural oscillatory set points through HIRREM suggests potentially multitudinous roles for this technology. Research is currently ongoing to further explore its potential applications and mechanisms of action.

SELECTION OF CITATIONS
SEARCH DETAIL
...