Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 146(30): 20660-20667, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031334

ABSTRACT

The intrinsic relationship between spin states and reactivity in peroxocobalt(III) complexes was investigated, specifically focusing on the influence of steric modulation on supporting ligands. Together with the previously reported [CoIII(TBDAP)(O2)]+ (2Tb), which exhibits spin crossover characteristics, two peroxocobalt(III) complexes, [CoIII(MDAP)(O2)]+ (2Me) and [CoIII(ADDAP)(O2)]+ (2Ad), bearing pyridinophane ligands with distinct N-substituents such as methyl and adamantyl groups, were synthesized and characterized. By manipulating the steric bulkiness of the N-substituents, control of spin states in peroxocobalt(III) complexes was demonstrated through various physicochemical analyses. Notably, 2Ad oxidized the nitriles to generate hydroximatocobalt(III) complexes, while 2Me displayed an inability for such oxidation reactions. Furthermore, both 2Ad and 2Tb exhibited similarities in spectroscopic and geometric features, demonstrating spin crossover behavior between S = 0 and S = 1. The steric bulkiness of the adamantyl and tert-butyl group on the axial amines was attributed to inducing a weak ligand field on the cobalt(III) center. Thus, 2Ad and 2Tb are an S = 1 state under the reaction conditions. In contrast, the less bulky methyl group on the amines of 2Me resulted in an S = 0 state. The redox potential of the peroxocobalt(III) complexes was also influenced by the ligand field arising from the steric bulkiness of the N-substituents in the order of 2Me (-0.01 V) < 2Tb (0.29 V) = 2Ad (0.29 V). Theoretical calculations using DFT supported the experimental observations, providing insights into the electronic structure and emphasizing the importance of the spin state of peroxocobalt(III) complexes in nitrile activation.

2.
J Org Chem ; 89(12): 8985-9000, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861548

ABSTRACT

Ketyl radicals are synthetically versatile reactive species, but their applications have been hampered by harsh generation conditions employing highly reducing metals. Recently, the pyridine-boryl radical received wide attention as a promising organic reductant because of its mildness as well as convenience in handling. While probing the utility of the pyridine-boryl radical, our group observed facile pinacol coupling reactivity that had not been known at that time. This serendipitous finding was successfully rendered into a practical synthesis of tetraaryl-1,2-diols in up to 99% yield within 1 h. Subsequently, upon examinations of various reaction manifolds, a diastereoselective ketyl-olefin cyclization was accomplished to produce cycloalkanols such as trans-2-alkyl-1-indanols. Compared to the previous methods, the stereocontrolling ability was considerably enhanced by taking advantage of the structurally modifiable boryl group that would be present near the bond-forming site. In this full account, our synthetic efforts with the O-boryl ketyl radicals are disclosed in detail, covering the discovery, optimization, scope expansion, and mechanistic analysis, including density functional theory (DFT) calculations.

3.
Chem Commun (Camb) ; 60(42): 5526-5529, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38695506

ABSTRACT

Herein, we report a mild and practical method for the deuteration of alkyl and aryl bromides by a thiyl radical catalyst and halogen-atom transfer (XAT) using disulfides and silanes under visible-light irradiation. In this study, various organic bromides such as 1°, 2°, and 3°-alkyl bromides and aryl bromides were converted to deuterated products in good to excellent yields and D-incorporation.

4.
Small ; 20(9): e2305999, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37840400

ABSTRACT

An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.

5.
Chem Commun (Camb) ; 59(80): 11983-11986, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37727049

ABSTRACT

Previously available ketyl radical cyclization conditions suffer from low and uncontrollable diastereoselectivity because of the absence of reagent-substrate interactions. In this report, stereochemical modulation was accomplished by taking advantage of the pyridine-boryl radical, which leaves the synthetically modifiable boronate moiety on the carbonyl oxygen near the reacting center during the stereo-determining cyclization step. In consequence, a catalytic diastereoselective synthesis of trans-2-substituted-1-indanols was achieved in the presence of a sterically congested six-membered diboronic ester and an efficient hydrogen atom donor.

6.
Inorg Chem ; 62(19): 7141-7149, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37139810

ABSTRACT

A series of cobalt(III)-peroxo complexes, [CoIII(R2-TBDAP)(O2)]+ (1R2; R2 = Cl, H, and OMe), and cobalt(III)-hydroperoxo complexes, [CoIII(R2-TBDAP)(O2H)(CH3CN)]2+ (2R2), bearing electronically tuned tetraazamacrocyclic ligands (R2-TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)-p-R2-pyridinophane) were prepared from their cobalt(II) precursors and characterized by various physicochemical methods. The X-ray diffraction and spectroscopic analyses unambiguously showed that all 1R2 compounds have similar octahedral geometry with a side-on peroxocobalt(III) moiety, but the O-O bond lengths of 1Cl [1.398(3) Å] and 1OMe [1.401(4) Å] were shorter than that of 1H [1.456(3) Å] due to the different spin states. For 2R2, the O-O bond vibration energies of 2Cl and 2OMe were identical at 853 cm-1 (856 cm-1 for 2H), but their Co-O bond vibration frequencies were observed at 572 cm-1 for 2Cl and 550 cm-1 for 2OMe, respectively, by resonance Raman spectroscopy (560 cm-1 for 2H). Interestingly, the redox potentials (E1/2) of 2R2 increased in the order of 2OMe (0.19 V) < 2H (0.24 V) < 2Cl (0.34 V) according to the electron richness of the R2-TBDAP ligands, but the oxygen-atom-transfer reactivities of 2R2 showed a reverse trend (k2: 2Cl < 2H < 2OMe) with a 13-fold rate enhancement at 2OMe over 2Cl in a sulfoxidation reaction with thioanisole. Although the reactivity trend contradicts the general consideration that electron-rich metal-oxygen species with low E1/2 values have sluggish electrophilic reactivity, this could be explained by a weak Co-O bond vibration of 2OMe in the unusual reaction pathway. These results provide considerable insight into the electronic nature-reactivity relationship of metal-oxygen species.

7.
J Am Chem Soc ; 144(45): 20752-20762, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36331386

ABSTRACT

The strong C-H bond activation of hydrocarbons is a difficult reaction in environmental and biological chemistry. Herein, a high-valent manganese(IV)-hydroxo complex, [MnIV(CHDAP-O)(OH)]2+ (2), was synthesized and characterized by various physicochemical measurements, such as ultraviolet-visible (UV-vis), electrospray ionization-mass spectrometry (ESI-MS), electron paramagnetic resonance (EPR), and helium-tagging infrared photodissociation (IRPD) methods. The one-electron reduction potential (Ered) of 2 was determined to be 0.93 V vs SCE by redox titration. 2 is formed via a transient green species assigned to a manganese(IV)-bis(hydroxo) complex, [MnIV(CHDAP)(OH)2]2+ (2'), which performs intramolecular aliphatic C-H bond activation. The kinetic isotope effect (KIE) value of 4.8 in the intramolecular oxidation was observed, which indicates that the C-H bond activation occurs via rate-determining hydrogen atom abstraction. Further, complex 2 can activate the C-H bonds of aromatic compounds, anthracene and its derivatives, under mild conditions. The KIE value of 1.0 was obtained in the oxidation of anthracene. The rate constant (ket) of electron transfer (ET) from N,N'-dimethylaniline derivatives to 2 is fitted by Marcus theory of electron transfer to afford the reorganization energy of ET (λ = 1.59 eV). The driving force dependence of log ket for oxidation of anthracene derivatives by 2 is well evaluated by Marcus theory of electron transfer. Detailed kinetic studies, including the KIE value and Marcus theory of outer-sphere electron transfer, imply that the mechanism of aromatic C-H bond hydroxylation by 2 proceeds via the rate-determining electron-transfer pathway.


Subject(s)
Hydrogen , Manganese , Manganese/chemistry , Kinetics , Oxidation-Reduction , Hydrogen/chemistry , Anthracenes
8.
Org Lett ; 24(28): 5181-5185, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35822845

ABSTRACT

We describe meta-selective C-H functionalization of arylsilanes using a Si-tethered directing group. The current method enables a selective alkenylation of arenes bearing a variety of functional groups, and several electron-deficient olefins are also applicable as coupling partners. Further functional group transformations of the silicon-tethered directing group provide multisubstituted arenes efficiently.


Subject(s)
Alkenes , Silicon
9.
Angew Chem Int Ed Engl ; 61(9): e202115036, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34897932

ABSTRACT

Strong and confined imidodiphosphorimidate (IDPi) catalysts enable highly enantioselective substitutions of cyclic, aliphatic hemiaminal ethers with enol silanes. 2-Substituted pyrrolidines, piperidines, and azepanes are obtained with high enantioselectivities, and the method displays a broad tolerance of various enol silane nucleophiles. Several natural products can be accessed using this methodology. Mechanistic studies support the intermediacy of non-stabilized, cyclic N-(exo-acyl)iminium ions, paired with the confined chiral counteranion. Computational studies suggest transition states that explain the observed enantioselectivity.

10.
Science ; 362(6411): 216-219, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30309951

ABSTRACT

Reactions that form a product with the same reactive functionality as that of one of the starting compounds frequently end in oligomerization. As a salient example, selective aldol coupling of the smallest, though arguably most useful, enolizable aldehyde, acetaldehyde, with just one partner substrate has proven to be extremely challenging. Here, we report a highly enantioselective Mukaiyama aldol reaction with the simple triethylsilyl (TES) and tert-butyldimethylsilyl (TBS) enolates of acetaldehyde and various aliphatic and aromatic acceptor aldehydes. The reaction is catalyzed by recently developed, strongly acidic imidodiphosphorimidates (IDPi), which, like enzymes, display a confined active site but, like small-molecule catalysts, have a broad substrate scope. The process is scalable, fast, efficient (0.5 to 1.5 mole % catalyst loading), and greatly simplifies access to highly valuable silylated acetaldehyde aldols.

11.
Angew Chem Int Ed Engl ; 57(37): 12162-12166, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30126072

ABSTRACT

O-heterocycles bearing tetrasubstituted stereogenic centers are prepared via catalytic chemo- and enantioselective nucleophilic additions to ketoaldehydes, in which the ketone reacts preferentially over the aldehyde. Five- and six-membered rings with both aromatic and aliphatic substituents, as well as an alkynyl substituent, are obtained. Moreover, 2,2,5-trisubstituted and 2,2,5,5-tetrasubstituted tetrahydrofurans are synthesized with excellent stereoselectivities. Additionally, the synthetic utility of the described method is demonstrated with a three-step synthesis of the side chain of anhydroharringtonine.

12.
Nat Chem ; 10(8): 888-894, 2018 08.
Article in English | MEDLINE | ID: mdl-29988150

ABSTRACT

The chemical synthesis of organic molecules involves, at its very essence, the creation of carbon-carbon bonds. In this context, the aldol reaction is among the most important synthetic methods, and a wide variety of catalytic and stereoselective versions have been reported. However, aldolizations yielding tertiary aldols, which result from the reaction of an enolate with a ketone, are challenging and only a few catalytic asymmetric Mukaiyama aldol reactions with ketones as electrophiles have been described. These methods typically require relatively high catalyst loadings, deliver substandard enantioselectivity or need special reagents or additives. We now report extremely potent catalysts that readily enable the reaction of silyl ketene acetals with a diverse set of ketones to furnish the corresponding tertiary aldol products in excellent yields and enantioselectivities. Parts per million (ppm) levels of catalyst loadings can be routinely used and provide fast and quantitative product formation in high enantiopurity. In situ spectroscopic studies and acidity measurements suggest a silylium ion based, asymmetric counteranion-directed Lewis acid catalysis mechanism.

13.
Science ; 359(6383): 1501-1505, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29599238

ABSTRACT

The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Brønsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Brønsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Brønsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. The methodology gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (-)-Boivinianin A.

14.
J Am Chem Soc ; 139(6): 2156-2159, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28169541

ABSTRACT

A direct enantioselective synthesis of substituted oxygen heterocycles from lactol acetates and enolsilanes has been realized using a highly reactive and confined imidodiphosphorimidate (IDPi) catalyst. Various chiral oxygen heterocycles, including tetrahydrofurans, tetrahydropyrans, oxepanes, chromans, and dihydrobenzofurans, were obtained in excellent enantioselectivities by reacting the corresponding lactol acetates with diverse enol silanes. Mechanistic studies suggest the reaction to proceed via a nonstabilized, aliphatic, cyclic oxocarbenium ion intermediate paired with the confined chiral counteranion.

15.
J Am Chem Soc ; 138(44): 14538-14541, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27786449

ABSTRACT

We describe the design and development of the first catalytic asymmetric vinylogous Prins cyclization. This reaction constitutes an efficient approach for highly diastereo- and enantioselective synthesis of tetrahydrofurans (THFs) and is catalyzed by a confined chiral imidodiphosphoric acid (IDP). Aromatic and heteroaromatic aldehydes react with various 3,5-dien-1-ols to afford 2,3-disubstituted THFs in excellent selectivity (d.r. > 20:1, e.r. up to 99:1). Aliphatic aldehydes react with similarly excellent results when a highly acidic imidodiphosphorimidate (IDPi) catalyst is used. With a racemic dienyl alcohol, the reaction proceeds via a kinetic resolution. DFT calculations suggest an explanation for unusually high stereoselectivity.

16.
Angew Chem Int Ed Engl ; 55(42): 13200-13203, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27653018

ABSTRACT

The enantioselective allylation of aldehydes to form homoallylic alcohols is one of the most frequently used carbon-carbon bond-forming reaction in chemical synthesis and, for several decades, has been a testing ground for new asymmetric methodology. However, a general and highly enantioselective catalytic addition of the inexpensive, nontoxic, air- and moisture-stable allyltrimethylsilane to aldehydes, the Hosomi-Sakurai reaction, has remained elusive. Reported herein is the design and synthesis of a highly acidic imidodiphosphorimidate motif (IDPi), which enables this transformation, thus converting various aldehydes with aromatic and aliphatic groups at catalyst loadings ranging from 0.05 to 2.0 mol % with excellent enantioselectivities. Our rationally constructed catalysts feature a highly tunable active site, and selectively process small substrates, thus promising utility in various other challenging chemical reactions.

17.
Curr Protoc Nucleic Acid Chem ; 57: 2.17.1-11, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24961720

ABSTRACT

This unit describes a highly effective method to produce 5'-O-DMT-2'-O-TBS mononucleosides selectively using a small organic catalyst. This methodology avoids the tedious protection/deprotection strategy necessary to differentiate the 2'- and 3'-hydroxyl groups in a ribonucleoside. The catalyst was synthesized in two steps, starting from the condensation of valinol and cyclopentyl aldehyde, followed by anionic addition of N-methylimidazole. Ring closure of the amino alcohol with N,N-dimethylformamide dimethyl acetal in methanol furnishes the catalyst. All four 2'-O-TBS protected mono-nucleosides, U, A(Bz), G(Ib), and C(Ac), were produced in a single step using 10 to 20 mol% of the catalyst at room temperature with excellent yields and selectivity. Further transformation to phosphoramidite demonstrates the utility of this protocol in the preparation of monomers useful for automated synthesis of RNA.


Subject(s)
RNA/chemistry , RNA/chemical synthesis , Ribonucleosides/chemistry , Ribonucleosides/chemical synthesis , Catalysis
18.
J Nanosci Nanotechnol ; 14(8): 5844-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25936013

ABSTRACT

Multi-encoded rugate porous silicon (MRPS)/polystyrene composite films were fabricated by using a free-standing multi-encoded rugate PS and polystyrene. MRPS exhibiting three reflection resonances was generated by an electrochemical etching of silicon wafer using a composite waveform summed three computer-generated pseudo-sinusoidal current waveforms, which were corresponded to the each of the sine components varied from 0.40, 0.38, to 0.36 Hz, with a spacing of 0.02 Hz between each sine component. They displayed three sharp photonic reflection resonances in the optical reflectivity spectrum. MRPS/polymer composite films obtained by casting of polystyrene polymer solution exhibited excellent photonic characteristics and robust structure upon flexing. For a possible application as VOCs sensor, these films were served for the detection of organic vapors such hexane and methanol.

19.
J Am Chem Soc ; 135(50): 18778-81, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24325399

ABSTRACT

A nitrile-based template that enables meta-selective C-H bond functionalization was developed. The template is applicable to a range of substituted arenes and tolerates a variety of functional groups. The directing group uses a silicon atom for attachment, allowing for a facile introduction/deprotection strategy increasing the synthetic practicality of this template.


Subject(s)
Nitriles/chemistry , Carbon/chemistry , Hydrogen Bonding
20.
Org Lett ; 15(18): 4710-3, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24000770

ABSTRACT

Herein we report the site-selective silylation of the ribonucelosides. The method enables a simple and efficient procedure for accessing suitably protected monomers for automated RNA synthesis. Switching to the opposite enantiomer of the catalyst allows for the selective silylation of the 3'-hydroxyl, which could be used in the synthesis of unnatural RNA or for the analoging of ribonucelosides. Lastly, the procedure was extended to ribavirin a potent antiviral therapeutic.


Subject(s)
Antiviral Agents/chemical synthesis , Ribavirin/chemical synthesis , Ribonucleosides/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalysis , Hydroxyl Radical/chemistry , Molecular Structure , RNA/chemical synthesis , Ribavirin/chemistry , Ribavirin/pharmacology , Ribonucleosides/chemistry , Ribonucleosides/pharmacology , Silanes/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL