Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 56(9): 4662-70, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22710113

ABSTRACT

The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all ß-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of ß-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to ß-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with ß-lactams by preventing the signal peptidase-mediated secretion of proteins required for ß-lactam resistance. Combinations of SpsB inhibitors and ß-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to ß-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Depsipeptides/pharmacology , Glycopeptides/pharmacology , Glycosides/pharmacology , Lipopeptides/pharmacology , Membrane Proteins/antagonists & inhibitors , Methicillin-Resistant Staphylococcus aureus/drug effects , Oligopeptides/pharmacology , Staphylococcal Infections/drug therapy , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Biphenyl Compounds/chemical synthesis , Depsipeptides/isolation & purification , Drug Synergism , Drug Therapy, Combination , Female , Glycopeptides/chemical synthesis , Glycopeptides/isolation & purification , Glycosides/isolation & purification , Humans , Lipopeptides/isolation & purification , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Multigene Family , Oligopeptides/chemical synthesis , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Staphylococcal Infections/microbiology , beta-Lactam Resistance/drug effects , beta-Lactam Resistance/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
2.
Chem Biol ; 18(8): 955-65, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21867911

ABSTRACT

Bacterial resistance to known therapeutics has led to an urgent need for new chemical classes of antibacterial agents. To address this we have applied a Staphylococcus aureus fitness test strategy to natural products screening. Here we report the discovery of kibdelomycin, a novel class of antibiotics produced by a new member of the genus Kibdelosporangium. Kibdelomycin exhibits broad-spectrum, gram-positive antibacterial activity and is a potent inhibitor of DNA synthesis. We demonstrate through chemical genetic fitness test profiling and biochemical enzyme assays that kibdelomycin is a structurally new class of bacterial type II topoisomerase inhibitor preferentially inhibiting the ATPase activity of DNA gyrase and topoisomerase IV. Kibdelomycin is thus the first truly novel bacterial type II topoisomerase inhibitor with potent antibacterial activity discovered from natural product sources in more than six decades.


Subject(s)
Actinomycetales/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/isolation & purification , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Models, Molecular , Pyrroles/isolation & purification , Pyrrolidinones/isolation & purification , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Topoisomerase II Inhibitors/isolation & purification
3.
J Antibiot (Tokyo) ; 63(8): 512-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20664605

ABSTRACT

Bacterial resistance to antibiotics, particularly to multiple antibiotics, is becoming a cause for significant concern. The only really viable course of action to counter this is to discover new antibiotics with novel modes of action. We have recently implemented a new antisense-based chemical genetic screening technology to accomplish this goal. The discovery and antibacterial activity of coelomycin, a fully substituted 2,6-dioxo pyrazine, illustrates the application of the Staphylococcus aureus fitness test strategy to natural products discovery.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Ascomycota/metabolism , Pyrazines/isolation & purification , Pyrazines/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/chemistry , Ascomycota/isolation & purification , Drug Evaluation, Preclinical/methods , Humans , Juniperus/microbiology , Magnetic Resonance Spectroscopy , Molecular Structure , Pyrazines/chemistry
4.
Chem Biol ; 16(8): 826-36, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19716473

ABSTRACT

The emergence of drug-resistant bacteria coupled with the limited discovery of novel chemical scaffolds and druggable targets inspires new approaches to antibiotic development. Here we describe a chemical genomics strategy based on 245 Staphylococcus aureus antisense RNA strains, each engineered for reduced expression of target genes essential for S. aureus growth. Attenuation of gene expression can sensitize cells to compounds that inhibit the activity of a gene product or associated process. Pools of strains grown competitively in the presence of bioactive compounds generate characteristic profiles of strain sensitivities reflecting compound mechanism of action. Here, we validate this approach with a structurally and mechanistically diverse set of reference antibiotics and, in the accompanying paper in this issue of Chemistry & Biology (Huber et al., 2009), demonstrate its use in the discovery of new cell wall inhibitors.


Subject(s)
Anti-Bacterial Agents/pharmacology , RNA, Antisense/metabolism , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/chemistry , Cluster Analysis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phenotype , RNA Interference , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...