Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 351: 124031, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38679127

ABSTRACT

This study performed a back-trajectory analysis to determine the influence of transboundary transport on the extent of aerosol pollution in South Korea, based on 5-year PM2.5 measurements (2015-2019) in five cities covering South Korea. A transboundary transport case was selected if a back trajectory passed over a dedicated region (BOX 1 and BOX 2) in the Yellow Sea. First, we found that the frequency of transboundary transport largely increases in the high pollution case, and this pattern is almost consistent for all months and all five cities, indicating the importance of investigating the horizontal direction of air mass movement associated with PM2.5, which has been discussed extensively in previous studies. In this study, we also examined the altitude change and straight moving distance (defined as travel distance) of back trajectories regarding the extent of local PM2.5. Consequently, we found that back trajectories in high aerosol pollution showed much lower altitudes and shorter travel differences, implying a significant contribution of surface emissions and stagnant air conditions to severe aerosol pollution. As a result, the local PM2.5 level was not significantly enhanced when the air mass passed over the Yellow Sea if transboundary transport occurred at high altitudes with rapid movement (i.e., high altitude and long travel distance back-trajectory). Based on these results, we suggest utilizing the combined information of the horizontal direction, altitude variation, and length of back trajectories to better evaluate transboundary transport.


Subject(s)
Aerosols , Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Republic of Korea , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Cities
2.
Sci Rep ; 10(1): 22462, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33384456

ABSTRACT

By using multiple satellite measurements, the changes of the aerosol optical depth (AOD) and nitrogen dioxide (NO2) over South Korea were investigated from January to March 2020 to evaluate the COVID-19 effect on the regional air quality. The NO2 decrease in South Korea was found but not significant, which indicates the effects of spontaneous social distancing under the maintenance of ordinary life. The AODs in 2020 were normally high in January, but they became lower starting from February. Since the atmosphere over Eastern Asia was unusually stagnant in January and February 2020, the AOD decrease in February 2020 clearly reveals the positive effect of the COVID-19. Considering the insignificant NO2 decrease in South Korea and the relatively long lifetime of aerosols, the AOD decrease in South Korea may be more attributed to the improvement of the air quality in neighboring countries. In March, regional atmosphere became well mixed and ventilated over South Korea, contributing to large enhancement of air quality. While the social activity was reduced after the COVID-19 outbreak, the regional meteorology should be also examined significantly to avoid the biased evaluation of the social impact on the change of the regional air quality.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , COVID-19/prevention & control , Environmental Monitoring , Particulate Matter/analysis , Aerosols/analysis , Humans , Nitrogen Dioxide/analysis , Republic of Korea , SARS-CoV-2 , Satellite Imagery
3.
J Biol Chem ; 291(11): 5555-5565, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26740630

ABSTRACT

The canonical Wnt signaling pathway, in which ß-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of ß-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear ß-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes ß-catenin in the nucleus. The isomerized ß-catenin could not bind to nuclear adenomatous polyposis coli, which drives ß-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of ß-catenin in the nucleus and might explain the decrease of ß-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate ß-catenin-mediated osteogenesis.


Subject(s)
Osteoblasts/cytology , Peptidylprolyl Isomerase/metabolism , Wnt3A Protein/metabolism , beta Catenin/metabolism , Animals , Cell Differentiation , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , HEK293 Cells , Humans , Mice , Mice, Knockout , NIMA-Interacting Peptidylprolyl Isomerase , Osteoblasts/metabolism , Osteogenesis , Peptidylprolyl Isomerase/genetics , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...