Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257692

ABSTRACT

For tumors wherein cancer cells remain in the tissue after colorectal cancer surgery, a hyperthermic anticancer agent is injected into the abdominal cavity to necrotize the remaining cancer cells with heat using a hyperthermic intraperitoneal chemotherapy system. However, during circulation, the processing temperature is out of range and the processing result is deteriorated. This paper proposes a look-up table (LUT) module design method that can stably maintain the processing temperature range during circulation via feedback. If the temperature decreases or increases, the LUT transmits a command signal to the heat exchanger to reduce or increase heat input, thereby maintaining the treatment temperature range. The command signal for increasing and decreasing heat input is Tp and Ta, respectively. The command signal for the treatment temperature range is Ts. If drug temperatures below 41 and above 43 °C are input to the LUT, it sends a Tp or Ta signal to the heat exchanger to increase or decrease the input heat, respectively. If the drug's temperature is 41-43 °C, the LUT generates a Ts signal and proceeds with the treatment. The proposed system can automatically control drug temperature using temperature feedback to ensure rapid, accurate, and safe treatment.


Subject(s)
Hyperthermic Intraperitoneal Chemotherapy , Judgment , Humans , Temperature , Hot Temperature , Fever
2.
Sensors (Basel) ; 23(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571507

ABSTRACT

After surgery for ovarian cancer or colorectal cancer, residual tumors are left around. A practical way to treat residual tumors is to destroy them with heat by injecting high-temperature drugs into the abdominal cavity. The injected medicinal substances are induced to flow out of the abdominal cavity; then, the spilled drug flows back into the abdominal cavity through feedback. During this process, the heat starts to decrease; thus, the treatment performance reduces. To overcome this problem, this study compares and assesses the temperature needed to maintain the heat for treatment and transmits a command signal to the heat exchanger through a look-up table (LUT). When the temperature decreases during the circulation of medications leaking out of the abdominal cavity, the LUT transmits a control signal (Tp) to the heat exchanger, which increases or vice versa. However, if the temperature (To) is within the treatment range, the LUT sends a Ts signal to the heat exchanger. This principle generates a pulse signal for the temperature difference (Tdif) in TC by comparing and determining the temperature (To) of the substance flowing out of the abdominal cavity with the reference temperature (Tref) through the temperature comparator (TC). At this time, if the signal is 41 °C or less, the LUT generates (heats) a Tp signal so that the temperature of the heat exchanger can be maintained in the range of 41 °C to 43 °C. If the Tdif is 44 °C or higher, the LUT generates (cools) the Ta signal and maintains the temperature of the heat exchanger at 41-43 °C. If the Tdif is maintained at 41-43 °C, the LUT generates a Tx signal to stop the system performance. At this time, the TC operation performance and Tdif generation process for comparing and determining the signal of To and Tref for drugs leaking out of the abdominal cavity is very important. It was observed that the faster the response signal, the lower the comparison and judgment error was; therefore, the response signal was confirmed to be 0.209 µs. The proposed method can guarantee rapid/accurate/safe treatment and automatically induce temperature adjustment; thus, it could be applied to the field of surgery.


Subject(s)
Hot Temperature , Hyperthermia, Induced , Humans , Temperature , Hyperthermic Intraperitoneal Chemotherapy , Hyperthermia, Induced/methods , Judgment , Neoplasm, Residual , Combined Modality Therapy
3.
Sensors (Basel) ; 22(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35408322

ABSTRACT

The consumption of multimedia content is ubiquitous in modern society. This is made possible by wireless local area networks (W-LAN) or wire service systems. Bandpass filters (BPF) have become very popular as they solve certain data transmission limitations allowing users to obtain reliable access to their multimedia content. The BPFs with quarter-wavelength short stubs can achieve performance; however, these BPFs are bulky. In this article, we propose a compact BPF with a T-shaped stepped impedance resonator (SIR) transmission line and a folded SIR structure. The proposed BPF uses a T-shaped SIR connected to a J-inverter structure (transmission line); this T-shaped SIR structure is used to replace the λg/4 transmission line seen in conventional stub BPFs. In addition, a folded SIR is added to the short stubs seen in conventional stub BPFs. This approach allows us to significantly reduce the size of the BPF. The advantage of a BPF is its very small size, low insertion loss, and wide bandwidth. The overall size of the new BPF is 2.44 mm × 1.49 mm (0.068λg × 0.059λg). The proposed BPF can be mass produced using semiconductors due to its planar structure. This design has the potential to be widely used in various areas including military, medical, and industrial systems.


Subject(s)
Electric Impedance
4.
ACS Nano ; 15(10): 16904-16912, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34661389

ABSTRACT

Ferromagnetism in two-dimensional materials presents a promising platform for the development of ultrathin spintronic devices with advanced functionalities. Recently discovered ferromagnetic van der Waals crystals such as CrI3, readily isolated two-dimensional crystals, are highly tunable through external fields or structural modifications. However, there remains a challenge because of material instability under air exposure. Here, we report the observation of an air-stable and layer-dependent ferromagnetic (FM) van der Waals crystal, CrPS4, using magneto-optic Kerr effect microscopy. In contrast to the antiferromagnetic (AFM) bulk, the FM out-of-plane spin orientation is found in the monolayer crystal. Furthermore, alternating AFM and FM properties observed in even and odd layers suggest robust antiferromagnetic exchange interactions between layers. The observed ferromagnetism in these crystals remains resilient even after the air exposure of about a day, providing possibilities for the practical applications of van der Waals spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...