Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(29): 34093-34101, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34270208

ABSTRACT

This study investigated competing chlorine evolution reaction (ClER) and oxygen evolution reaction (OER) on Pt electrodes under variable polarity reversal intervals (±16.7 mA cm-2, 30-600 s) in the context of distinctive roles of Pt(0) and PtOx on the surface in dilute (0.1 M) NaCl solutions. The substrate generation/tip collection mode of scanning electrochemical microscopy (SECM) quantified the current efficiency (CE) of ClER with a large tip-to-substrate distance (>500 µm) to avoid intervention of bubbles and spatial variations. Surface interrogation SECM using [Ru(NH3)6]2+/3+ coupled with X-ray photoelectron spectroscopy (XPS) identified the Pt4+-enriched surface of PtOx with a bilayer structure to give more efficient regeneration of Pt(0) under the shorter reversal interval. The in situ SECM complemented bulk electrolysis and XPS to demonstrate that ClER on Pt(0) and OER on PtOx primarily determine the CE of ClER, in agreement with a kinetic model. The descriptive role of surface Pt/PtOx ratio rationalized the enhanced selectivity for ClER upon the polarity switching, being independent on a scaling relationship. The current reversal (not allowed to IrO2 electrodes) also alleviated calcareous scale deposit in the electrolyte with hardness.

2.
RSC Adv ; 11(20): 12107-12116, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-35423728

ABSTRACT

Recently, reduced TiO2 nanotube arrays via electrochemical self-doping (r-TiO2) are emerging as a good alternative to conventional dimensionally stable anodes (DSAs) due to their comparable performance and low-cost. However, compared with conventional DSAs, they suffer from poor stability, low current efficiency, and high energy consumption. Therefore, this study aims to advance the electrochemical performances in the chlorine evolution of r-TiO2 with a thin RuO2 layer coating on the nanotube structure (RuO2@r-TiO2). The RuO2 thin layer was successfully coated on the surface of r-TiO2. This was accomplished with a self-synthesized layer of ruthenium precursor originating from a spontaneous redox reaction between Ti3+ and metal ions on the r-TiO2 surface and thermal treatment. The thickness of the thin RuO2 layer was approximately 30 nm on the nanotube surface of RuO2@r-TiO2 without severe pore blocking. In chlorine production, RuO2@r-TiO2 exhibited higher current efficiency (∼81.0%) and lower energy consumption (∼3.0 W h g-1) than the r-TiO2 (current efficiency of ∼64.7% of and energy consumption of ∼5.2 W h g-1). In addition, the stability (ca. 22 h) was around 20-fold enhancement in RuO2@r-TiO2 compared with r-TiO2 (ca. 1.2 h). The results suggest a new route to provide a thin layer coating on r-TiO2 and to synthesize a high performance oxidant-generating anode.

SELECTION OF CITATIONS
SEARCH DETAIL
...