Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38675265

ABSTRACT

In this study, the fabrication of microfluidic chips through the bonding of poly (methyl methacrylate) (PMMA) boards featuring designed patterns to create a three-dimensional sandwich structure with embedded microchannels was explored. A key focus was optimization of the interface quality of bonded PMMA pairs by adjusting the solvent, such as such as acetone, alcohol, and their mixture. Annealing was conducted below 50 °C to leverage the advantages of low-temperature bonding. Because of the differences in the chemical reactivity of PMMA toward acetone, alcohol, and their combinations, the resulting defect densities at the bonding interfaces differed significantly under low-temperature annealing conditions. To achieve the optimal sealing integrity, bonding pressures of 30 N, 40 N, and 50 N were evaluated. The interface was analyzed through microstructural examination via optical microscopy and stress measurements were determined using digital photoelasticity, while the bonding strength was assessed through tensile testing.

2.
Polymers (Basel) ; 10(7)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-30960617

ABSTRACT

A novel integration of three-dimensional (3D) architectures of near-field electrospun polyvinylidene fluoride (PVDF) nano-micro fibers (NMFs) is applied to an intelligent self-powered sound-sensing element (ISSE). Using 3D architecture with greatly enhanced piezoelectric output, the sound wave energy can be harvested under a sound pressure of 120+ dB SPL of electrical signal about 0.25 V. Furthermore, the simple throat vibrations such as hum, cough and swallow with different intensity or frequency can be distinguishably detected. Finally, the developed ultrathin ISSE of near-field electrospun piezoelectric fibers has the advantage of direct-write fabrication on highly flexible substrates and low cost. The proposed technique demonstrates the advancement of existing electrospinning technologies in new practical applications of sensing purposes such as voice control, wearable electronics, implantable human wireless technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...