Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 56(4): 1418-30, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23409840

ABSTRACT

We report here the optimization of an HldE kinase inhibitor to low nanomolar potency, which resulted in the identification of the first reported compounds active on selected E. coli strains. One of the most interesting candidates, compound 86, was shown to inhibit specifically bacterial LPS heptosylation on efflux pump deleted E. coli strains. This compound did not interfere with E. coli bacterial growth (MIC > 32 µg/mL) but sensitized this pathogen to hydrophobic antibiotics like macrolides normally inactive on Gram-negative bacteria. In addition, 86 could sensitize E. coli to serum complement killing. These results demonstrate that HldE kinase is a suitable target for drug discovery. They also pave the way toward novel possibilities of treating or preventing bloodstream infections caused by pathogenic Gram negative bacteria by inhibiting specific virulence factors.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Benzothiazoles/chemical synthesis , Escherichia coli/drug effects , Multienzyme Complexes/antagonists & inhibitors , Nucleotidyltransferases/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Triazines/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Escherichia coli/pathogenicity , Lipopolysaccharides/pharmacology , Microbial Sensitivity Tests , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacology , Virulence/drug effects
2.
J Med Chem ; 56(4): 1405-17, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23256532

ABSTRACT

As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of D-glycero-ß-D-manno-heptose 7-phosphate kinase (HldA), an absolutely conserved enzyme in this pathway, from Burkholderia cenocepacia. HldA is structurally similar to members of the PfkB carbohydrate kinase family and appears to catalyze heptose phosphorylation via an in-line mechanism mediated mainly by a conserved aspartate, Asp270. Moreover, we report the structures of HldA in complex with two potent inhibitors in which both inhibitors adopt a folded conformation and occupy the nucleotide-binding sites. Together, these results provide important insight into the mechanism of HldA-catalyzed heptose phosphorylation and necessary information for further development of HldA inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Burkholderia cenocepacia/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Bacterial Proteins/genetics , Burkholderia cenocepacia/genetics , Crystallography, X-Ray , Models, Molecular , Mutation , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Conformation , Structure-Activity Relationship , Virulence
3.
Structure ; 20(10): 1737-45, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22940583

ABSTRACT

Plasma membrane repair involves the coordinated effort of proteins and the inner phospholipid surface to mend the rupture and return the cell back to homeostasis. Here, we present the three-dimensional structure of a multiprotein complex that includes S100A10, annexin A2, and AHNAK, which along with dysferlin, functions in muscle and cardiac tissue repair. The 3.5 Å resolution X-ray structure shows that a single region from the AHNAK C terminus is recruited by an S100A10-annexin A2 heterotetramer, forming an asymmetric ternary complex. The AHNAK peptide adopts a coil conformation that arches across the heterotetramer contacting both annexin A2 and S100A10 protomers with tight affinity (∼30 nM) and establishing a structural rationale whereby both S100A10 and annexin proteins are needed in AHNAK recruitment. The structure evokes a model whereby AHNAK is targeted to the membrane surface through sandwiching of the binding region between the S100A10/annexin A2 complex and the phospholipid membrane.


Subject(s)
Annexin A2/chemistry , Cell Membrane/chemistry , Membrane Proteins/chemistry , Neoplasm Proteins/chemistry , S100 Proteins/chemistry , Amino Acid Motifs , Animals , Crystallography, X-Ray , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Protein Structure, Secondary , Rabbits , Recombinant Fusion Proteins/chemistry
4.
Biochim Biophys Acta ; 1784(2): 319-34, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18157955

ABSTRACT

Streptogrisin B (SGPB) has served as one of the models for studying the catalytic activities of serine peptidases. Here we report its native crystal structures at pH 4.2 at a resolution of 1.18A, and at pH 7.3 at a resolution of 1.23A. Unexpectedly, outstanding electron density peaks occurred in the active site and the substrate-binding region of SGPB in the computed maps at both pHs. The densities at pH 4.2 were assigned as a tetrapeptide, Asp-Ala-Ile-Tyr, whereas those at pH 7.3 were assigned as a tyrosine molecule and a leucine molecule existing at equal occupancies in both of the SGPB molecules in the asymmetric unit. Refinement with relaxed geometric restraints resulted in molecular structures representing mixtures of the second tetrahedral intermediates and the enzyme-product complexes of SGPB existing in a pH-dependent equilibrium. Structural comparisons with the complexes of SGPB with turkey ovomucoid third domain (OMTKY3) and its variants have shown that, upon the formation of the tetrahedral intermediate, residues Glu192A to Gly193 of SGPB move towards the alpha-carboxylate O of residue P1 of the bound species, and adjustments in the side-chain conformational angles of His57 and Ser195 of SGPB favor the progression of the catalytic mechanism of SGPB.


Subject(s)
Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Electrons , Genome, Bacterial/genetics , Hydrogen Bonding , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Serine Endopeptidases/genetics , Streptomyces griseus/enzymology , Streptomyces griseus/genetics , Substrate Specificity
5.
J Mol Biol ; 367(2): 527-46, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17266986

ABSTRACT

Sequence-to-reactivity algorithms (SRAs) for proteins have the potential of being broadly applied in molecular design. Recently, Laskowski et al. have reported an additivity-based SRA that accurately predicts most of the standard free energy changes of association for variants of turkey ovomucoid third domain (OMTKY3) with six serine peptidases, one of which is streptogrisin B (commonly known as Streptomyces griseus peptidase B, SGPB). Non-additivity effects for residues 18I and 32I, and for residues 20I and 32I of OMTKY3 occurred when the associations with SGPB were predicted using the SRA. To elucidate precisely the mechanics of these non-additivity effects in structural terms, we have determined the crystal structures of the unbound OMTKY3 (with Gly32I as in the wild-type amino acid sequence) at a resolution of 1.16 A, the unbound Ala32I variant of OMTKY3 at a resolution of 1.23 A, and the SGPB:OMTKY3-Ala32I complex (equilibrium association constant K(a)=7.1x10(9) M(-1) at 21(+/-2) C degrees, pH 8.3) at a resolution of 1.70 A. Extensive comparisons with the crystal structure of the unbound OMTKY3 confirm our understanding of some previously addressed non-additivity effects. Unexpectedly, SGPB and OMTKY3-Ala32I form a 1:2 complex in the crystal. Comparison with the SGPB:OMTKY3 complex shows a conformational change in the SGPB:OMTKY3-Ala32I complex, resulting from a hinged rigid-body rotation of the inhibitor caused by the steric hindrance between the methyl group of Ala32IA of the inhibitor and Pro192BE of the peptidase. This perturbs the interactions among residues 18I, 20I, 32I and 36I of the inhibitor, probably resulting in the above non-additivity effects. This conformational change also introduces residue 10I as an additional hyper-variable contact residue to the SRA.


Subject(s)
Models, Molecular , Ovomucin/chemistry , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/chemistry , Trypsin Inhibitor, Kazal Pancreatic/chemistry , Algorithms , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Streptogramin B/chemistry , Structure-Activity Relationship , Thermodynamics , Turkey
6.
J Mol Biol ; 366(3): 916-32, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17196984

ABSTRACT

The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.


Subject(s)
Epoxy Compounds/metabolism , Peptides/metabolism , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Matrix Proteins/chemistry , Binding Sites , Coronavirus M Proteins , Crystallography, X-Ray , Epoxy Compounds/chemistry , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Protons , Static Electricity , Substrate Specificity
7.
J Mol Biol ; 353(5): 1137-51, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16219322

ABSTRACT

The main peptidase (M(pro)) from the coronavirus (CoV) causing severe acute respiratory syndrome (SARS) is one of the most attractive molecular targets for the development of anti-SARS agents. We report the irreversible inhibition of SARS-CoV M(pro) by an aza-peptide epoxide (APE; k(inact)/K(i) = 1900(+/-400) M(-1) s(-1)). The crystal structures of the M(pro):APE complex in the space groups C2 and P2(1)2(1)2(1) revealed the formation of a covalent bond between the catalytic Cys145 S(gamma) atom of the peptidase and the epoxide C3 atom of the inhibitor, substantiating the mode of action of this class of cysteine-peptidase inhibitors. The aza-peptide component of APE binds in the substrate-binding regions of M(pro) in a substrate-like manner, with excellent structural and chemical complementarity. In addition, the crystal structure of unbound M(pro) in the space group C2 revealed that the "N-fingers" (N-terminal residues 1 to 7) of both protomers of M(pro) are well defined and the substrate-binding regions of both protomers are in the catalytically competent conformation at the crystallization pH of 6.5, contrary to the previously determined crystal structures of unbound M(pro) in the space group P2(1).


Subject(s)
Cysteine Endopeptidases/chemistry , Protease Inhibitors/chemistry , Severe acute respiratory syndrome-related coronavirus/chemistry , Binding Sites , Catalysis , Coronavirus 3C Proteases , Crystallography, X-Ray , Epoxy Compounds/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...