Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 102(9): 5431-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21106369

ABSTRACT

This study investigated the correlations between the system treatment efficiencies and total nitrogen (TN) and total phosphorus (TP) accumulations of aboveground tissues of the wetland macrophytes of Hsin-Hai Bridge phase II constructed wetland. Among 19 emergent macrophytes studied, the optimal TN contents, 3.82% and 3.52% (w/w) were found for water spinach (Ipomoea aquatica) and Ludwigia x taiwanensis; while the optimal TP contents were found for the above two macrophytes at 0.64% and 0.83% (w/w). The accumulations of total plant TN and TP uptakes increased from 213 to 403 kg and 41 to 75 kg from March 2007 to the peak at September 2007, respectively. The TN ratios between plant tissue accumulations and the removals from the influents were 1.57%, 2.76%, 1.51% and 3.2% from March 2007 to March 2008. In the same period, the TP ratios between plant tissue accumulations and the removals from influents were 1.71%, 8.0%, 0.58% and 10.1%. The roles of the uptakes by aboveground portions of emergent macrophytes in system nutrient removals from the influents were more significant during growth seasons.


Subject(s)
Nitrogen/isolation & purification , Phosphorus/isolation & purification , Plants/metabolism , Water Purification/methods , Wetlands , Biodegradation, Environmental , Biomass , Carbon/analysis , Plant Development , Taiwan , Waste Disposal, Fluid
2.
Sci Total Environ ; 408(20): 4328-33, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20656329

ABSTRACT

Typhoons and hurricanes in subtropical/tropical regions can induce significant environmental changes (e.g., mass flooding and inundations). However, the damage to the pollutant removal efficiencies of constructed wetlands brought about by these natural disturbances has been neglected in major studies conducted in temperate climates. Therefore, this study compares the pollutant removal performance of a constructed wetland in the Danshui River Basin, before and after the system was inundated with flooding from Typhoon Krosa in 2007. The pollutant removal performance of the free water surface (FWS) constructed wetland was investigated monthly from September 2006 to April 2008. Results of the study demonstrated that this FWS wetland effectively removed 64.3% BOD, 98.9% NH(4)-N, and 39.5% Total-P before Typhoon Krosa. However, the extensive flooding caused by Typhoon Krosa swept over most of the aboveground plant community and deposited the sediment onto the bottom of each compartment. Subsequently, reduced pollutant removal efficiencies were observed. Only 37.7% BOD, 35.1% NH(4)-N, and 31.8% Total-P were removed after this event, although the flow regime was immediately restored. Comparing the water quality data for the FWS wetland before and after Typhoon Krosa revealed the immediate, quantitative damage to the pollutant removal performance caused by the typhoon's inundation. Consequently, a high-flow bypass and additional preventive measures would protect any constructed wetland in areas subject to typhoons.


Subject(s)
Disasters , Environmental Restoration and Remediation , Floods , Water Pollutants/analysis , Wetlands , Ammonia/analysis , Cities , Cyclonic Storms , Efficiency , Nitrogen/analysis , Oxygen/analysis , Phosphorus/analysis , Tropical Climate
3.
Environ Monit Assess ; 111(1-3): 307-23, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16311834

ABSTRACT

This study analyzes the results of the first 5 years of long-term environmental monitoring of the dynamics of coastal vegetation communities in southwestern Taiwan. Seven permanent plots were established in major vegetation communities, including grassland, windbreak forest, and secondary succession forest. Results showed that species richness decreased yearly in grasslands but fluctuated moderately in the forest plots. A Jaccard similarity coefficient was used to evaluate the similarities of species composition between different monitoring years. Species composition changed rapidly in grassland sites, with the similarity coefficient dropping from 82 to 29% in 5 years. The similarity coefficient of vegetation in the composite hardwood forest dropped from 80 to 50%, indicating that at least half the species were the same as those in the beginning and that the composition of forest communities was more stable than that of grassland communities. Dominant species in the forest community changed gradually during the monitoring period. The original planting of Casuarina equisetifolia in windbreak forests decreased year by year in most of the plots, while Cerbera manghas and Ficus microcarpa became the dominant species. The trend of replacement of dominant species indicates that most of the vegetation communities are still in successional stages.


Subject(s)
Magnoliopsida/classification , Trees , Biodiversity , Conservation of Natural Resources , Environmental Monitoring , Magnoliopsida/growth & development , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...