Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Environ Toxicol ; 39(6): 3356-3366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38444163

ABSTRACT

Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.


Subject(s)
Apoptosis , Janus Kinase 2 , Melanoma , STAT3 Transcription Factor , Signal Transduction , Xanthophylls , bcl-X Protein , Humans , Xanthophylls/pharmacology , STAT3 Transcription Factor/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Janus Kinase 2/metabolism , Cell Line, Tumor , Signal Transduction/drug effects , Apoptosis/drug effects , bcl-X Protein/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity
2.
Plant Physiol Biochem ; 207: 108326, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237421

ABSTRACT

Understanding how to adapt outdoor cultures of Nannochloropsis oceanica to high light (HL) is vital for boosting productivity. The N. oceanica RB2 mutant, obtained via ethyl methanesulfonate mutagenesis, was chosen for its tolerance to Rose Bengal (RB), a singlet oxygen (1O2) generator. Compared to the wild type (WT), the RB2 mutant showed higher resilience to excess light conditions. Analyzing the ascorbate-glutathione cycle (AGC), involving ascorbate peroxidases (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), in the RB2 mutant under HL stress provided valuable insights. At 250 µmol photon m-2 s-1 (HL), the WT strain displayed superoxide anion radicals (O2▪-) and hydrogen peroxide (H2O2) accumulation, increased lipid peroxidation, and cell death compared to normal light (NL) conditions (50 µmol photon m-2 s-1). The RB2 mutant didn't accumulate O2▪- and H2O2 after HL exposure, and exhibited increased APX, DHAR, and GR activities and transcript levels compared to WT and remained consistent after HL treatment. Although the RB2 mutant had a smaller ascorbate (AsA) pool than the WT, its ability to regenerate dehydroascorbate (DHA) increased post HL exposure, indicated by a higher AsA/DHA ratio. Additionally, under HL conditions, the RB2 mutant displayed an improved glutathione (GSH) regeneration rate (GSH/GSSG ratio) without changing the GSH pool size. Remarkably, H2O2 or menadione (a O2▪- donor) treatment induced cell death in the WT strain but not in the RB2 mutant. These findings emphasize the essential role of AGC in the RB2 mutant of Nannochloropsis in handling photo-oxidative stress.


Subject(s)
Hydrogen Peroxide , Rose Bengal , Hydrogen Peroxide/metabolism , Ascorbic Acid/metabolism , Antioxidants/metabolism , Glutathione Reductase/metabolism , Oxidative Stress , Glutathione/metabolism , Acclimatization , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism
4.
Bioresour Technol ; 368: 128350, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36414139

ABSTRACT

Carbon dioxide is the major greenhouse gas and regards as the critical issue of global warming and climate changes. The inconspicuous microalgae are responsible for 40% of carbon fixation among all photosynthetic plants along with a higher photosynthetic efficiency and convert the carbon into lipids, protein, pigments, and bioactive compounds. Genetic approach and metabolic engineering are applied to accelerate the growth rate and biomass of microalgae, hence achieve the mission of carbon neutrality. Meanwhile, CRISPR/Cas9 is efficiently to enhance the productivity of high-value compounds in microalgae for it is easier operation, more affordable and is able to regulate multiple genes simultaneously. The genetic engineering strategies provide the multidisciplinary concept to evolute and increase the CO2 fixation rate through Calvin-Benson-Bassham cycle. Therefore, the technologies, bioinformatics tools, systematic engineering approaches for carbon neutrality and circular economy are summarized and leading one step closer to the decarbonization society in this review.


Subject(s)
Microalgae , Microalgae/genetics , Technology , Biomass , Photosynthesis , Metabolic Engineering
5.
Sci Total Environ ; 855: 158850, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36411602

ABSTRACT

Rapid growth in the aquaculture industry and corresponding increases in nutrient and organic carbon levels in coastal regions can lead to eutrophication and increased greenhouse gas emissions. Macroalgae are the organisms primarily responsible for the capture of CO2 and removal of nutrients from coastal waters. In the current study, we developed a novel wastewater treatment system in which the red macroalga, Sarcordia suae, is used to capture CO2 under thermostatic conditions in subtropical regions. In 2020 (without temperature control), the carbon capture rate (CCR) of Sarcordia suae varied considerably with the season: winter/spring (2.1-3.9 g-C m-2 d-1) and summer (0.09 g-C m-2 d-1). In 2021, solar powered cooling reduced summer seawater temperatures from 31 to 33 °C to 23-25 °C with a corresponding increase in the mean CCR: winter/spring (2-7 g-C m-2 d-1) and summer (1.33 g-C m-2 d-1). The proposed aquaculture wastewater system proved highly efficient in removing nitrogen (20.7 mg-N g-1 DW d-1, DW = dry weight) and phosphorus (4.4 mg-P g-1 DW d-1). Furthermore, the high density of Sarcodia (1.10 ± 0.03 g cm-3) would permit the harvesting and subsequent dumping of Sarcodia in deep off-shore waters. This study demonstrated a low-cost land-based seaweed cultivation system for capturing CO2 and excess nutrients from aquaculture wastewater year-round under temperature controlled environments in subtropical regions.


Subject(s)
Seaweed , Solar Energy , Wastewater , Carbon , Carbon Dioxide , Aquaculture
6.
Biotechnol J ; 17(8): e2100603, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35467782

ABSTRACT

Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value-added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome-editing tools in microalgae biorefinery and wastewater treatment (WWT). The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of WWT and biorefinery feedstock production are discussed.


Subject(s)
Microalgae , Water Purification , Biofuels , Biomass , Gene Editing , Genetic Engineering
7.
Front Plant Sci ; 12: 690763, 2021.
Article in English | MEDLINE | ID: mdl-34421944

ABSTRACT

The acclimation mechanism of Chlamydomonas reinhardtii to nitric oxide (NO) was studied by exposure to S-nitroso-N-acetylpenicillamine (SNAP), a NO donor. Treatment with 0.1 or 0.3 mM SNAP transiently inhibited photosynthesis within 1 h, followed by a recovery, while 1.0 mM SNAP treatment caused irreversible photosynthesis inhibition and mortality. The SNAP effects are avoided in the presence of the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO). RNA-seq, qPCR, and biochemical analyses were conducted to decode the metabolic shifts under NO stress by exposure to 0.3 mM SNAP in the presence or absence of 0.4 mM cPTIO. These findings revealed that the acclimation to NO stress comprises a temporally orchestrated implementation of metabolic processes: (1). modulation of NADPH oxidase (respiratory burst oxidase-like 2, RBOL2) and ROS signaling pathways for downstream mechanism regulation, (2). trigger of NO scavenging elements to reduce NO level; (3). prevention of photo-oxidative risk through photosynthesis inhibition and antioxidant defense system induction; (4). acclimation to nitrogen and sulfur shortage; (5). attenuation of transcriptional and translational activity together with degradation of damaged proteins through protein trafficking machinery (ubiquitin, SNARE, and autophagy) and molecular chaperone system for dynamic regulation of protein homeostasis. In addition, the expression of the gene encoding NADPH oxidase, RBOL2, showed a transient increase while that of RBOL1 was slightly decreased after NO challenge. It reflects that NADPH oxidase, a regulator in ROS-mediated signaling pathway, may be involved in the responses of Chlamydomonas to NO stress. In conclusion, our findings provide insight into the molecular events underlying acclimation mechanisms in Chlamydomonas to NO stress.

8.
Sci Rep ; 10(1): 13287, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764698

ABSTRACT

Ascorbate peroxidase (APX; EC 1.11.1.11) activity and transcript levels of CrAPX1, CrAPX2, and CrAPX4 of Chlamydomonas reinhardtii increased under 1,400 µE·m-2·s-1 condition (HL). CrAPX4 expression was the most significant. So, CrAPX4 was downregulated using amiRNA technology to examine the role of APX for HL acclimation. The CrAPX4 knockdown amiRNA lines showed low APX activity and CrAPX4 transcript level without a change in CrAPX1 and CrAPX2 transcript levels, and monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) activities and transcript levels. Upon exposure to HL, CrAPX4 knockdown amiRNA lines appeared a modification in the expression of genes encoding the enzymes in the ascorbate-glutathione cycle, including an increase in transcript level of CrVTC2, a key enzyme for ascorbate (AsA) biosynthesis but a decrease in MDAR and DHAR transcription and activity after 1 h, followed by increases in reactive oxygen species production and lipid peroxidation after 6 h and exhibited cell death after 9 h. Besides, AsA content and AsA/DHA (dehydroascorbate) ratio decreased in CrAPX4 knockdown amiRNA lines after prolonged HL treatment. Thus, CrAPX4 induction together with its association with the modulation of MDAR and DHAR expression for AsA regeneration is critical for Chlamydomonas to cope with photo-oxidative stress.


Subject(s)
Ascorbate Peroxidases/metabolism , Chlamydomonas reinhardtii/enzymology , Chlamydomonas reinhardtii/radiation effects , Light/adverse effects , Oxidative Stress/radiation effects , Ascorbate Peroxidases/deficiency , Ascorbate Peroxidases/genetics , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/physiology , Gene Expression Regulation, Plant/radiation effects , Gene Knockdown Techniques
9.
Front Plant Sci ; 11: 772, 2020.
Article in English | MEDLINE | ID: mdl-32587598

ABSTRACT

Autophagy plays a role in regulating important cellular functions in response to stress conditions. The role of nitric oxide (NO) in the regulation of autophagy in Chlamydomonas reinhardtii has been not studied. Illumination of C. reinhardtii cells under a high light (HL, 1,600 µmol m-2 s-1) condition induced a NO burst through NO synthase- and nitrate reductase-independent routes, and cell death. The abundance of CrATG8 protein, an autophagy marker of C. reinhardtii, increased after HL illumination along with a linear increase in the transcript abundance of autophagy-associated genes (CrVPS34, CrATG1, CrATG3, CrATG4, CrATG6, CrATG7, CrATG8, and CrATG12), which were suppressed in the presence of an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). The cells were treated with NO donors, S-nitroso-N-acetyl-penicillamine, and S-nitrosoglutathione, under a normal light (50 µmol m-2 s-1) condition to elucidate the role of NO in autophagy activation and cell death. Treatment with 0.05 mM or 0.1 mM NO donors increased the abundance of ATG8 protein and CrATG transcripts, which were suppressed in the presence of cPTIO. Moreover, treatment with 0.05 mM NO donors did not affect cell viability, while 0.1 mM NO donors elicited a transient decrease in cell growth and death that recovered after 12 h. The transient effect could be prevented by the presence of cPTIO. However, treatment with 1 mM H2O2 and 0.1 mM NO donors enhanced autophagy induction and resulted in cell death after 24 h. The interaction of H2O2 and NO can be prevented by cPTIO treatment. This implies that NO is critical for the interaction of H2O2 and NO that induces cell death and autophagy. Furthermore, exposure to 0.1 mM NO donors under a non-lethal HL condition (750 µmol m-2 s-1) evoked autophagy and cell death. In conclusion, the present findings demonstrated that the NO-mediated autophagy pathway is activated in C. reinhardtii under lethal high intensity illumination and may interact with H2O2 for HL-induced cell death. The relationships between autophagy and cell death are discussed.

10.
Biotechnol Biofuels ; 12: 251, 2019.
Article in English | MEDLINE | ID: mdl-31641373

ABSTRACT

BACKGROUND: The increasing emission of flue gas from industrial plants contributes to environmental pollution, global warming, and climate change. Microalgae have been considered excellent biological materials for flue gas removal, particularly CO2 mitigation. However, tolerance to high temperatures is also critical for outdoor microalgal mass cultivation. Therefore, flue gas- and thermo-tolerant mutants of Chlorella vulgaris ESP-31 were generated and characterized for their ability to grow under various conditions. RESULTS: In this study, we obtained two CO2- and thermo-tolerant mutants of Chlorella vulgaris ESP-31, namely, 283 and 359, with enhanced CO2 tolerance and thermo-tolerance by using N-methyl-N-nitro-N-nitrosoguanidine (NTG) mutagenesis followed by screening at high temperature and under high CO2 conditions with the w-zipper pouch selection method. The two mutants exhibited higher photosynthetic activity and biomass productivity than that of the ESP-31 wild type. More importantly, the mutants were able to grow at high temperature (40 °C) and a high concentration of simulated flue gas (25% CO2, 80-90 ppm SO2, 90-100 ppm NO) and showed higher carbohydrate and lipid contents than did the ESP-31 wild type. CONCLUSIONS: The two thermo- and flue gas-tolerant mutants of Chlorella vulgaris ESP-31 were useful for CO2 mitigation from flue gas under heated conditions and for the production of carbohydrates and biodiesel directly using CO2 from flue gas.

11.
Plant Cell Physiol ; 60(10): 2167-2179, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31198969

ABSTRACT

Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is one of the key enzymes in the conversion of oxidized ascorbate (AsA) back to reduced AsA in plants. This study investigated the role of MDAR in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to photooxidative stress by overexpression and downregulation of the CrMDAR1 gene. For overexpression of CrMDAR1 driven by a HSP70A:RBCS2 fusion promoter, the cells survived under very high-intensity light stress (VHL, 1,800 µmol�m-2�s-1), while the survival of CC-400 and vector only control (vector without insert) cells decreased for 1.5 h under VHL stress. VHL increased lipid peroxidation of CC-400 but did not alter lipid peroxidation in CrMDAR1 overexpression lines. Additionally, overexpression of CrMDAR1 showed an increase in viability, CrMDAR1 transcript abundance, enzyme activity and the AsA: dehydroascorbate (DHA) ratio. Next, MDAR was downregulated to examine the essential role of MDAR under high light condition (HL, 1,400 µmol�m-2�s-1). The CrMDAR1 knockdown amiRNA line exhibited a low MDAR transcript abundance and enzyme activity and the survival decreased under HL conditions. Additionally, HL illumination decreased CrMDAR1 transcript abundance, enzyme activity and AsA:DHA ratio of CrMDAR1-downregulation amiRNA lines. Methyl viologen (an O2�- generator), H2O2 and NaCl treatment could induce an increase in CrMDAR1 transcript level. It represents reactive oxygen species are one of the factor inducing CrMDAR1 gene expression. In conclusion, MDAR plays a role in the tolerance of Chlamydomonas cells to photooxidative stress.


Subject(s)
Ascorbic Acid/metabolism , Chlamydomonas reinhardtii/enzymology , NADH, NADPH Oxidoreductases/metabolism , Stress, Physiological , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/physiology , Chlamydomonas reinhardtii/radiation effects , Down-Regulation , Gene Expression Regulation, Plant , Hydrogen Peroxide/pharmacology , Light , Lipid Peroxidation , NADH, NADPH Oxidoreductases/genetics , Oxidative Stress , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Sodium Chloride/pharmacology
12.
J Plant Physiol ; 231: 374-382, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30388677

ABSTRACT

The methionine residues of proteins are the preferred targets of oxidation by reactive oxygen species resulting in the formation of methionine sulfoxide (MetSO), which impairs protein function. Methionine sulfoxide reductase A and B (MSR) catalyze the reduction of the MetSO S and R epimers back to Met residues, respectively. The roles of abscisic acid (ABA) and nitric oxide (NO) on the transcript levels of methionine sulfoxide reductase (MSR; EC 1.8.4.6) in the roots of 2-d-old etiolated rice (Oryza sativa L.) seedlings exposed to NaCl were examined. The OsMSR transcript levels increased upon exposure to NaCl, which increased as the NaCl concentrations increased. Fluridone (Flu) pretreatment inhibited the increases in ABA and NO contents and the OsMSRA4, OsMSRA5, OsMSRB1.1, OsMSRB3 and OsMSRB5 transcripts by NaCl, while ABA application reversed the effects of Flu. Flu did not affect the OsMSRA2 and OsMSRB1.2 transcripts. The application of the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), to NaCl-treated roots inhibited the increase in all of the OsMSRs transcripts with the exception of OsMSRB1.2. Treatment with the NO donor sodium nitroprusside (SNP) increased all the OsMSRs transcripts. The inhibitory effect of Flu on the increase of the OsMSRA4, OsMSRA5, OsMSR1.1, OsMSRB 3, and OsMSRB5 transcripts in the NaCl-treated roots was reversed by SNP. cPTIO inhibited the expression of all the OsMSR genes. The OsMSRA2.1 and OsMSRB1.2 transcripts can be increased by SNP. The Flu-inhibited internal ABA contents cannot be recovered by treatment with cPTIO or SNP. In addition, NaCl-induced NO production can be divided into ABA-dependent and ABA-independent routes. Therefore, the ABA-dependent NO route regulated the expression of OsMSRA4, OsMSRA5, OsMSRB1.1, OsMSRB 3, and OsMSRB5 in the NaCl-treated rice roots, while the ABA-independent NO pathway modulated OsMSRA2.1, and the ABA-independent and NO-independent pathway modulated OsMSRB1.2 expression in response to NaCl treatment.


Subject(s)
Abscisic Acid/metabolism , Methionine Sulfoxide Reductases/metabolism , Nitric Oxide/metabolism , Oryza/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Oryza/enzymology , Oryza/physiology , Plant Roots/enzymology , Plant Roots/physiology , Real-Time Polymerase Chain Reaction , Salt Stress , Transcriptome
13.
Bioresour Technol ; 252: 180-187, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29306613

ABSTRACT

Microalgal biomass is in great demand for many applications, including aquaculture feed. The most suitable system for microalgal culture is open pond cultivation, but it is also highly vulnerable to biological contamination. Contamination greatly reduces the biomass yield and depending on the contaminant, the quality of the biomass as a feed additive is compromised. Five groups of organisms that are the most common contaminants, including grazers, fungi, photosynthetic organisms, bacteria and viruses, are presented and the best possible ways to control these contaminants are indicated. Selection of a fast growing species along with selective technologies previously used for wastewater treatment can keep grazer population in control, while exploiting host-specific characteristic of fungal infection can protect from fungal attacks. Control of photosynthetic organisms and bacteria by good cultivation practices and the use of probiotics are critically important, as these organisms compete with the microalgal culture for sunlight and organic substrate.


Subject(s)
Biomass , Microalgae , Wastewater , Aquaculture , Ponds
14.
Physiol Plant ; 162(1): 35-48, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28950038

ABSTRACT

The role of glutathione reductase (GR; EC 1.6.4.2) in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to high-intensity light stress (HL, 1400 µmol m-2 s-1 ) was examined. Cells survived under high light (HL) stress, although their growth was inhibited after long-term treatment (9-24 h). GR activity increased 1 h after HL treatment. The contents of total glutathione, reduced glutathione (GSH) and glutathione disulfide (GSSG) increased 1-3 h after HL treatment and then decreased after 24 h, while the GSH:GSSG ratio (glutathione redox potential) decreased after 3-9 h and recovered after 24 h. The transcript abundance of GR, CrGR1 (Cre06.g262100) and CrGR2 (Cre09.g396252) as well as glutathione synthesis-related genes, CrGSH1 (Cre02g077100.t1.1) and CrGSH2 (Cre17.g70800.t1.1), increased with a peak near 1 h after HL treatment. Except for enhanced glutathione synthesis, the GR-mediated glutathione redox machinery is also critical for the tolerance of C. reinhardtii cells to HL stress. Therefore, GR was downregulated or upregulated to investigate the importance of GR in HL tolerance. The CrGR1 knockdown amiRNA line exhibited low GR transcript abundance, GR activity and GSH:GSSG ratio and could not survive under HL conditions. Over-expression of CrGR1 or CrGR2 driven by a HSP70A:RBCS2 fusion promoter resulted in a higher GR transcript abundance, GR activity and GSH:GSSG ratio and led to cell survival when exposed to high-intensity illumination, i.e. 1800 µmol m-2 s-1 . In conclusion, GR-mediated modulation of the glutathione redox potential plays a role in the tolerance of Chlamydomonas cells to photo-oxidative stress.


Subject(s)
Adaptation, Physiological/radiation effects , Chlamydomonas reinhardtii/physiology , Chlamydomonas reinhardtii/radiation effects , Glutathione Reductase/metabolism , Glutathione/metabolism , Light , Oxidative Stress/radiation effects , Cell Proliferation/radiation effects , Chlamydomonas reinhardtii/enzymology , Down-Regulation/radiation effects , Gene Expression Regulation, Plant/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/radiation effects , Transformation, Genetic
15.
Plant Physiol Biochem ; 120: 144-155, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29028546

ABSTRACT

Dehydroascorbate reductase (DHAR) is a key enzyme for glutathione (GSH)-dependent reduction of dehydroascorbate (DHA) to recycled ascorbate (AsA) in plants, and plays a major role against the toxicity of reactive oxygen species (ROS). Previously, we proposed that the increase of AsA regeneration via enhanced DHAR activity modulates the ascorbate-glutathione cycle activity against photooxidative stress in Chlamydomonas reinhardtii. In the present work, we use site-directed mutagenesis and crystal structure analysis to elucidate the molecular basis of how C. reinhardtii DHAR (CrDHAR1) is involved in the detoxification mechanisms. Mutagenesis data show that the D21A, D21N and C22A mutations result in severe loss of the enzyme's function, suggesting crucial roles of Asp-21 and Cys-22 in substrate binding and catalysis. The mutant K11A also exhibits reduced redox activity (∼50%). The crystal structure of apo CrDHAR1 further provides insights into the proposed mechanism centering on the strictly conserved Cys-22, which is suggested to initiate the redox reactions of DHA and GSH. Furthermore, in vitro oxidation of the recombinant CrDHAR1 in the presence of 1 mM H2O2 has minor effects on the Km for the substrates but significantly reduces the kcat. The enzyme's activity and its mRNA abundance in the C. reinhardtii cells are increased by treatment with 0.2-1 mM H2O2 but decreased when H2O2 is ≥ 1.5 mM. The latter decrease is accompanied by oxidative damage and lower AsA concentrations. These biochemical and physiological data provide new insights into the catalytic mechanism of CrDHAR1, which protects the C. reinhardtii cells from oxidative stress-induced toxicity.


Subject(s)
Chlamydomonas reinhardtii , Oxidative Stress , Oxidoreductases , Plant Proteins , Amino Acid Substitution , Catalytic Domain , Chlamydomonas reinhardtii/enzymology , Chlamydomonas reinhardtii/genetics , Crystallography, X-Ray , Mutation, Missense , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Biotechnol Biofuels ; 10: 214, 2017.
Article in English | MEDLINE | ID: mdl-28919927

ABSTRACT

BACKGROUND: Fermentative production of lactic acid from algae-based carbohydrates devoid of lignin has attracted great attention for its potential as a suitable alternative substrate compared to lignocellulosic biomass. RESULTS: A Chlorella sp. GD mutant with enhanced thermo-tolerance was obtained by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine to overcome outdoor high-temperature inhibition and it was used as a feedstock for fermentative lactic acid production. The indoor experiments showed that biomass, reducing sugar content, photosynthetic O2 evolution rate, photosystem II activity (Fv/Fm and Fv'/Fm'), and chlorophyll content increased as temperature, light intensity, and CO2 concentration increased. The mutant showed similar DIC affinity and initial slope of photosynthetic light response curve (α) as that of the wild type but had higher dissolved inorganic carbon (DIC) utilization capacity and maximum photosynthesis rate (Pmax). Moreover, the PSII activity (Fv'/Fm') in the mutant remained normal without acclimation process after being transferred to photobioreactor. This suggests that efficient utilization of incident high light and enhanced carbon fixation with its subsequent flux to carbohydrates accumulation in the mutant contributes to higher sugar and biomass productivity under enriched CO2 condition. The mutant was cultured outdoors in a photobioreactor with 6% CO2 aeration in hot summer season in southern Taiwan. The harvested biomass was subjected to separate hydrolysis and fermentation (SHF) for lactic acid production with carbohydrate concentration equivalent to 20 g/L glucose using the lactic acid-producing bacterium Lactobacillus plantarum 23. The conversion rate and yield of lactic acid were 80% and 0.43 g/g Chlorella biomass, respectively. CONCLUSIONS: These results demonstrated that the thermo-tolerant Chlorella mutant with high photosynthetic efficiency and biomass productivity under hot outdoor condition is an efficient fermentative feedstock for large-scale lactic acid production.

17.
Bioresour Technol ; 244(Pt 2): 1294-1303, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28457721

ABSTRACT

This study was undertaken to increase the biomass and carbohydrate productivities of a freshwater cyanobacterium Synechococcus elongatus under hot outdoor conditions through genetic manipulation to facilitate the application of using the cyanobacterial biomass as bio-refinery feedstocks. The stress tolerance genes (hspA, osmotin) were expressed in S. elongatus to improve their growth under various environment stresses of outdoor cultivation. The results revealed that over-expression of hspA and osmotin significantly improved temperature (45°C), high light intensity, and salt tolerances of S. elongatus cells, making it capable of efficiently growing in seawater under outdoor cultivation. The carbohydrate productivity of these stress tolerant strains was also 15-30-fold higher than that of the control strain, although the carbohydrate contents of the recombinant and control strains were similar. Our findings demonstrate that the genetic engineering for improved stresses tolerance in S. elongatus could facilitate the feasibility of using cyanobacteria as feedstock for bio-refinery industry.


Subject(s)
Cyanobacteria , Genetic Engineering , Synechococcus , Fresh Water , Light , Seawater
18.
Zootaxa ; 4277(2): 151-198, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-30308645

ABSTRACT

Within the family Archaeobalanidae, the sponge-inhabiting barnacles include species from the subfamilies Acastinae and Bryozobiinae as well as from the genus Membranobalanus in the subfamily Archaeobalaninae. Members of these groups are obligatory symbionts of poriferans, but the Acastinae can also be found in association with alcyonaceans and antipatharians. Acasta sulcata Lamarck, 1818, is one of the most widely reported sponge-inhabiting barnacle species, with numerous records across the Indo-West Pacific region revealing significant morphological variation. A combined morphological and molecular approach has revealed high diversity in recent collections of sponge-inhabiting barnacles in Taiwan and Australia, and four new species, namely Acasta aspera sp. nov., Acasta huangi sp. nov., Acasta radenta sp. nov., and Acasta undulaterga sp. nov., have been described here. All four species are morphologically close to A. sulcata, and the morphological similarity between these proposed species has led to the proposal of a "sulcata species complex."


Subject(s)
Thoracica , Animals , Australia , Taiwan
19.
Plant Cell Physiol ; 57(10): 2104-2121, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27440549

ABSTRACT

The role of ascorbate (AsA) recycling via dehydroascorbate reductase (DHAR) in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress was examined. The activity of DHAR and the abundance of the CrDHAR1 (Cre10.g456750) transcript increased after moderate light (ML; 750 µmol m-2 s-1) or high light (HL; 1,800 µmol m-2 s-1) illumination, accompanied by dehydroascorbate (DHA) accumulation, decreased AsA redox state, photo-inhibition, lipid peroxidation, H2O2 overaccumulation, growth inhibition and cell death. It suggests that DHAR and AsA recycling is limiting under high-intensity light stress. The CrDHAR1 gene was cloned and its recombinant CrDHAR1 protein was a monomer (25 kDa) detected by Western blot that exhibits an enzymatic activity of 965 µmol min-1 mg-1 protein. CrDHAR1 was overexpressed driven by a HSP70A:RBCS2 fusion promoter or down-regulated by artificial microRNA (amiRNA) to examine whether DHAR-mediated AsA recycling is critical for the tolerance of C. reinahartii cells to photo-oxidative stress. The overexpression of CrDHAR1 increased DHAR protein abundance and enzyme activity, AsA pool size, AsA:DHA ratio and the tolerance to ML-, HL-, methyl viologen- or H2O2-induced oxidative stress. The CrDHAR1-knockdown amiRNA lines that have lower DHAR expression and AsA recycling ability were sensitive to high-intensity illumination and oxidative stress. The glutathione pool size, glutathione:oxidized glutathione ratio and glutathione reductase and ascorbate peroxidase activities were increased in CrDHAR1-overexpressing cells and showed a further increase after high-intensity illumination but decreased in wild-type cells after light stress. The present results suggest that increasing AsA regeneration via enhanced DHAR activity modulates the ascorbate-glutathione cycle activity in C. reinhardtii against photo-oxidative stress.


Subject(s)
Adaptation, Physiological/radiation effects , Ascorbic Acid/metabolism , Chlamydomonas reinhardtii/enzymology , Chlamydomonas reinhardtii/radiation effects , Light , Oxidative Stress/radiation effects , Oxidoreductases/metabolism , Adaptation, Physiological/drug effects , Base Sequence , Chlorophyll/metabolism , Chlorophyll A , Down-Regulation/genetics , Fluorescence , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Glutathione/metabolism , Hydrogen Peroxide/toxicity , Paraquat/toxicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transformation, Genetic/drug effects , Transformation, Genetic/radiation effects
20.
J Insect Sci ; 162016.
Article in English | MEDLINE | ID: mdl-26798137

ABSTRACT

The methanol and ethyl acetate (EA) extracts of four species of sea lily (Himerometra magnipinna, Comaster multifidus, Comanthina sp., and Comatella maculata) were evaluated for their insecticidal activity against Yellow-fever mosquito larvae (Aedes aegypti) and their repellency against adult Asian Tiger mosquitoes (Aedes albopictus). The 24-hr minimum inhibition concentration (MIC) data revealed that the extracts from H. magnipinna and the C. maculata were the most active, killing mosquito larvae at 12.5 ppm. The toxicity of the extracts from these four sea lilies in descending order was H. magnipinna (12.5 ppm), C. maculata (12.5 ppm), C. multifidus (100 ppm), and Comanthina sp. (200 ppm). Furthermore, no significant difference in toxicity was found using either EA or methanol as the extraction solvent. The MIC at 12.5 ppm is promising as an insecticide lead. The repellency study results show that EA is a better solvent for one species (H. magnipinna), but the methanol is a better solvent overall. The repellency of these sea lily extracts in descending order was Comanthina sp. MeOH (ED50 at 0.32%), followed by H. magnipinna EA (ED50 at 0.38%), C. multifidus MeOH (ED50 at 0.57%), C. maculata MeOH (ED50 at 0.76%), C. multifidus EA (ED50 at 1.25%), and H. magnipinna MeOH (ED50 at 1.67%). A compound with ED50 <0.5% is considered to be a promising repellant. Among the studied sea lilies, both Comanthina sp. and H. magnipinna have potential to be further developed as mosquito control agents due to their favorable toxicity and repellency.


Subject(s)
Aedes , Echinodermata/chemistry , Insect Repellents , Insecticides , Plant Extracts , Animals , Microbial Sensitivity Tests , Taiwan , Tissue Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...