Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 150: 112995, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35658243

ABSTRACT

Multidrug resistance (MDR) is a multifactorial issue in cancer treatment. Drug efflux transporters, particularly P-glycoprotein (P-gp), are major contributors to such resistance. In the present study, we evaluated the P-gp-inhibiting and MDR-reversing effects of two compounds, namely rhein, an anthraquinone, and diacerein, the acetylated prodrug of rhein. ABCB1/Flp-In-293 was used as a model for investigating the related molecular mechanisms, and the multi-drug-resistant cancer cell line KB/VIN was used as a platform for evaluating the reversal of MDR0. The results indicated that at a concentration of 2.5 µM, both diacerein and rhein significantly inhibited P-gp efflux function. They also downregulated P-gp expression by interacting with the signal transducer and activator of transcription 3. Further investigation of the inhibitory mechanism of these compounds revealed that both stimulated P-gp ATPase activity dose dependently and engaged in the noncompetitive inhibition of rhodamine 123 efflux. Furthermore, rhein was revealed to be a potent reverser of MDR in cancer, and the combination of 30 µM rhein and 1000 nM vincristine exerted a strong synergistic effect, achieving a high combination index (CI) of 0.092. Diacerein demonstrated potential applications as a selective cytotoxic agent against multi-drug-resistant cancer cells at a concentration of > 18.92 µM and as a mild MDR reverser at doses of < 10 µM. In conclusion, diacerein and rhein are potential candidates for P-gp inhibition and MDR reversal in cancer cells.


Subject(s)
Neoplasms , Prodrugs , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Anthraquinones/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Prodrugs/pharmacology , STAT3 Transcription Factor/metabolism
2.
Biomed Pharmacother ; 144: 112379, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34794239

ABSTRACT

Cancer multi-drug resistance (MDR) caused by P-glycoprotein (P-gp) efflux is a critical unresolved clinical concern. The present study analyzed the effect of cinnamophilin on P-gp inhibition and MDR reversion. The effect of cinnamophilin on P-gp was investigated through drug efflux assay, ATPase assay, MDR1 shift assay, and molecular docking. The cancer MDR-reversing ability and mechanisms were analyzed through cytotoxicity and combination index (CI), cell cycle, and apoptosis experiments. P-gp efflux function was significantly inhibited by cinnamophilin without influencing the drug's expression or conformation. Cinnamophilin uncompetitively inhibited the efflux of doxorubicin and rhodamine 123 and exhibited a distinct binding behavior compared with verapamil, the P-gp standard inhibitor. The half maximal inhibitory concentration of cinnamophilin for doxorubicin and rhodamine 123 efflux was 12.47 and 11.59 µM, respectively. In regard to P-gp energy consumption, verapamil-stimulated ATPase activity was further enhanced by cinnamophilin at concentrations of 0.1, 1, 10, and 20 µM. In terms of MDR reversion, cinnamophilin demonstrated synergistic cytotoxic effects when combined with docetaxel, vincristine, or paclitaxel. The CI was < 0.7 in all experimental combination treatments. The present study showed that cinnamophilin possesses P-gp-modulating effects and cancer MDR resensitizing ability.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Guaiacol/analogs & derivatives , Lignans/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Antibiotics, Antineoplastic/pharmacokinetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Binding Sites/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Drug Resistance, Multiple/drug effects , Drug Synergism , Guaiacol/pharmacology , Humans , Molecular Docking Simulation , Rhodamine 123 , Verapamil/pharmacokinetics
3.
Phytomedicine ; 53: 252-262, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30668405

ABSTRACT

BACKGROUND: Multidrug resistance (MDR) in cancer is one of the main obstacles in treatment with chemotherapy. Drug efflux through P-glycoprotein is the major mechanism involved in MDR. A potential strategy to provide the best possible clinical outcomes is to develop P-glycoprotein (P-gp) inhibitors from natural products. PURPOSE: The present study investigated the effects of the natural sesquiterpene lactone tenulin and its derivative isotenulin on human P-gp; the mechanisms of kinetic interactions were also explored. METHODS: The human P-gp (ABCB1/Flp-In™-293) stable expression cells were established by using the Flp-In™ system. The effects of tenulin and isotenulin on cell viability were evaluated by SRB assays in established cell lines, sensitive cancer cell line (HeLaS3), and resistant cancer cell line (KB-vin). The transporter inhibition ability was evaluated by calcein-AM uptake assays. The P-gp inhibition kinetics of tenulin and isotenulin were evaluated by rhodamine123 and doxorubicin efflux assays. The ATPase activity was evaluated with the Pgp-Glo™ Assay System. RESULTS: Tenulin and isotenulin significantly inhibited the P-gp efflux function by stimulating P-gp ATPase activity. Tenulin and isotenulin interacted with the effluxes of rhodamine 123 and doxorubicin through a competitive and noncompetitive mechanism, respectively. The combinations of tenulin and isotenulin with chemotherapeutic drugs significantly resensitized MDR cancer cells. CONCLUSION: These results suggested that tenulin and isotenulin are potential candidates to be developed for synergistic treatment of MDR cancers.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Neoplasm/drug effects , Lactones/pharmacology , Sesquiterpenes/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Resistance, Multiple/drug effects , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Rhodamine 123/pharmacology
4.
PLoS One ; 13(7): e0201408, 2018.
Article in English | MEDLINE | ID: mdl-30059533

ABSTRACT

Opioid addiction is a major public health issue worldwide. Methadone maintenance treatment (MMT) is used to detoxify users of illicit opiates, but drug relapse is common and associated with poor quality of life (QoL). This study investigated the associations between the GRIN3A, GRM6, and TPH2 genetic variants and QoL in the MMT population. A total of 319 participants were included in the study, and genotyping of GRIN3A, GRM6, and TPH2 genes was performed using the Sequenom iPLEX. Associations between genotypes and the domains of QoL were examined through posthoc analysis with LSMEANS syntax using SAS 9.1.3. The single nucleotide polymorphisms rs9325202 and rs1487275 in the TPH2 gene were significantly associated with the QoL domain of physical functioning. The least absolute shrinkage and selection operator regression model revealed that the risk allele rs1487275-G was significantly correlated with the domain of physical functioning when clinical characteristics were considered as covariates. The results of the present study illuminate the importance of the genetic basis of QoL in the MMT population, and suggest that genotypes should be considered as a potential QoL indicator.


Subject(s)
Methadone/administration & dosage , Opioid-Related Disorders , Polymorphism, Single Nucleotide , Quality of Life , Receptors, Glutamate/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Tryptophan Hydroxylase/genetics , Adult , Female , Humans , Male , Middle Aged , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/genetics
5.
Sci Rep ; 7(1): 15795, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29150631

ABSTRACT

Patients with type 2 diabetes mellitus (T2DM) experience many cardiovascular complications. Several studies have demonstrated the cardioprotective effects of incretin-based therapies; however, there are few studies on the effects of long-term incretin-based therapies on cardiovascular events. Therefore, the present study conducted a systematic review and network meta-analysis to evaluate the effects of long-term incretin-based therapies on ischaemic diseases. We searched PubMed, CENTRAL, and Clinicaltrial.gov to retrieve randomised control trials reported until December 2016 and enrolled only RCTs with more than a 1-year follow-up. The network meta-analysis was performed using R Software with a GeMTC package. A total of 40 trials were included. Dipeptidyl peptidase 4 inhibitors and glucagon-like peptide-1 agonists were associated with a lower risk of myocardial infarction (MI) than were sulfonylureas (odds ratio [95% credible interval] 0.41 [0.24-0.71] and 0.48 [0.27-0.91], respectively). These results suggested that patients with T2DM receiving long-term incretin-based therapies have a lower risk of MI than do those receiving sulfonylurea-based therapy. These findings highlight the risks of cardiovascular events in patients who receive long-term incretin-based therapies, and may provide evidence for the selection of antidiabetic therapy in the future.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Incretins/therapeutic use , Myocardial Ischemia/complications , Myocardial Ischemia/drug therapy , Aged , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Female , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/metabolism , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Publication Bias , Risk Factors , Time Factors
6.
J Microbiol Immunol Infect ; 35(4): 236-42, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12542249

ABSTRACT

Microorganism contamination in hatcheries and eggs has a serious impact on the viability and quality of chicks as well as on the overall growth performance of chickens. Microbiological agents are present in the fluff when chicks hatch. Detecting microorganisms in fluff is a convenient method for evaluating the hygienic status in a hatchery. Fluff samples from 31 hatcheries collected over 3 years were tested for the total bacterial count, the presence of Salmonella spp., and fungus to evaluate the hygienic status of hatcheries in Taiwan from 1999 through 2001. The total bacterial score from the fluff samples was calculated and expressed as a bacterial score in a log scale. Most hatcheries had a bacterial count ranged from scale 1 to 3. Among the hatcheries, 13% to 29% were contaminated with Salmonella spp.; and 33% to 73% were contaminated with fungi in different quarters. The third quarter of each year was the most contaminated period (p<0.01). According to the data obtained from the fluff tests, hatcheries keep their hygienic status and supply good quality chicks by cleaning and disinfecting.


Subject(s)
Chickens/microbiology , Housing, Animal , Poultry Diseases/microbiology , Animal Husbandry , Animals , Feathers/microbiology , Fungi/isolation & purification , Hygiene , Salmonella/classification , Salmonella/isolation & purification , Salmonella Infections, Animal/microbiology , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...