Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 23(1): 703, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37495969

ABSTRACT

BACKGROUND: Overexpression of Twist1, one of the epithelial-mesenchymal transition-transcription factors (EMT-TFs), is associated with hepatocellular carcinoma (HCC) metastasis. Pelitinib is known to be an irreversible epidermal growth factor receptor tyrosine kinase inhibitor that is used in clinical trials for colorectal and lung cancers, but the role of pelitinib in cancer metastasis has not been studied. This study aimed to investigate the anti-migration and anti-invasion activities of pelitinib in HCC cell lines. METHODS: Using three HCC cell lines (Huh7, Hep3B, and SNU449 cells), the effects of pelitinib on cell cytotoxicity, invasion, and migration were determined by cell viability, wound healing, transwell invasion, and spheroid invasion assays. The activities of MMP-2 and -9 were examined through gelatin zymography. Through immunoblotting analyses, the expression levels of EMT-TFs (Snail1, Twist1, and ZEB1) and EMT-related signaling pathways such as mitogen-activated protein kinases (MAPKs) and Akt signaling pathways were measured. The activity and expression levels of target genes were analyzed by reporter assay, RT-PCR, quantitative RT-PCR, and immunoblotting analysis. Statistical analysis was performed using one-way ANOVA with Dunnett's Multiple comparison tests in Prism 3.0 to assess differences between experimental conditions. RESULTS: In this study, pelitinib treatment significantly inhibited wound closure in various HCC cell lines, including Huh7, Hep3B, and SNU449. Additionally, pelitinib was found to inhibit multicellular cancer spheroid invasion and metalloprotease activities in Huh7 cells. Further investigation revealed that pelitinib treatment inhibited the migration and invasion of Huh7 cells by inducing Twist1 degradation through the inhibition of MAPK and Akt signaling pathways. We also confirmed that the inhibition of cell motility by Twist1 siRNA was similar to that observed in pelitinib-treated group. Furthermore, pelitinib treatment regulated the expression of target genes associated with EMT, as demonstrated by the upregulation of E-cadherin and downregulation of N-cadherin. CONCLUSION: Based on our novel finding of pelitinib from the perspective of EMT, pelitinib has the ability to inhibit EMT activity of HCC cells via inhibition of Twist1, and this may be the potential mechanism of pelitinib on the suppression of migration and invasion of HCC cells. Therefore, pelitinib could be developed as a potential anti-cancer drug for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics
2.
Biomed Pharmacother ; 155: 113734, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152408

ABSTRACT

Oxidative stress and chronic inflammation are closely linked to various diseases. However, previous studies have demonstrated that plant extracts could prevent and alleviate these adverse outcomes. Piper betle Linn. (Piper betle L.) is a cosmopolitan plant that belongs to the Piperaceae family, whose leaves are edible and possess several health benefits. This study sought to characterize the anti-inflammatory and antioxidant effects of a methanol extract of Piper betle L. leaves and stems (MPBLLS). MPBLLS was found to have a dose-dependent radical scavenging effect, as demonstrated by the 2,2-diphenyl-1-picrylhydrazyl assay. Additionally, MPBLLS inhibited the lipopolysaccharide (LPS)-stimulated production of nitric oxide and prostaglandin E2 by reducing the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophages without affecting cell viability. Furthermore, our findings suggested that the inhibitory effects of MPBLLS on pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and interleukin-6 were due to the inhibition of the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in LPS-treated RAW 264.7 macrophages. MPBLLS and hydroxychavicol, a major constituent of MPBLLS, suppressed LPS-induced translocation of NF-κB p65 from cytoplasm to nucleus. Interestingly, MPBLLS increased nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels and transcription levels of Nrf2 target genes in a dose-dependent manner. Collectively, our findings suggest that MPBLLS could serve as a basis for the development of novel orally-administered therapies due to its inhibitory effects on oxidative and inflammatory stress. DATA AVAILABILITY: The data presented in this study are available on request from the corresponding author.


Subject(s)
NF-kappa B , Piper betle , Mice , Animals , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , NF-E2-Related Factor 2/metabolism , Interleukin-1beta/metabolism , Methanol/pharmacology , Cyclooxygenase 2/metabolism , Nitric Oxide/metabolism , Tumor Necrosis Factor-alpha/metabolism , RAW 264.7 Cells , Interleukin-6/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Macrophages , Plant Extracts/pharmacology , Plant Extracts/metabolism , MAP Kinase Signaling System , Cytokines/metabolism , Mitogen-Activated Protein Kinases/metabolism , Prostaglandins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...