Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
ACS Biomater Sci Eng ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748191

ABSTRACT

Microfluidic spinning is emerging as a useful technique in the fabrication of alginate fibers, enabling applications in drug screening, disease modeling, and disease diagnostics. In this paper, by capitalizing on the benefits of aqueous two-phase systems (ATPS) to produce diverse alginate fiber forms, we introduce an ATPS-Spinning platform (ATPSpin). This ATPS-enabled method efficiently circumvents the rapid clogging challenges inherent to traditional fiber production techniques by regulating the interaction between alginate and cross-linking agents like Ba2+ ions. By varying system parameters under the guidance of a regime map, our system produces several fiber forms─solid, hollow, and droplet-filled─consistently and reproducibly from a single device. We demonstrate that the resulting alginate fibers possess distinct features, including biocompatibility. We also encapsulate HEK293 cells in the microfibers as a proof-of-concept that this versatile microfluidic fiber generation platform may have utility in tissue engineering and regenerative medicine applications.

2.
Diabetologia ; 67(6): 1138-1154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489029

ABSTRACT

AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.


Subject(s)
Capillary Permeability , Diabetes Mellitus, Type 2 , Extracellular Vesicles , Animals , Extracellular Vesicles/metabolism , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Humans , Male , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Proteomics , Mice, Inbred C57BL
3.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479648

ABSTRACT

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Subject(s)
Apolipoprotein A-I , Lipoproteins, HDL , Lipoproteins, LDL , Transcytosis , Animals , Humans , Male , Mice , Apolipoprotein A-I/metabolism , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Protein Binding , Scavenger Receptors, Class B/metabolism
4.
Circ Res ; 134(3): 269-289, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38174557

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments. Given their boundary location, we propose ECs use bidirectional release of distinct EV cargo in quiescent (healthy) and activated (atheroprone) states to communicate with cells within the circulation and blood vessel wall. METHODS: EVs were isolated from primary human aortic ECs (plate and transwell grown; ±IL [interleukin]-1ß activation), quantified, visualized, and analyzed by miRNA transcriptomics and proteomics. Apical and basolateral EC-EV release was determined by miRNA transfer, total internal reflection fluorescence and electron microscopy. Vascular reprogramming (RNA sequencing) and functional assays were performed on primary human monocytes or smooth muscle cells±EC-EVs. RESULTS: Activated ECs increased EV release, with miRNA and protein cargo related to atherosclerosis. EV-treated monocytes and smooth muscle cells revealed activated EC-EV altered pathways that were proinflammatory and atherogenic. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, activated basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and smooth muscle cells, respectively, with functional assays and in vivo imaging supporting this concept. CONCLUSIONS: Demonstrating that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance the design of endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.


Subject(s)
Atherosclerosis , Extracellular Vesicles , MicroRNAs , Humans , Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Cell Communication , Atherosclerosis/metabolism
6.
Elife ; 122023 09 29.
Article in English | MEDLINE | ID: mdl-37773612

ABSTRACT

Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Humans , Mice , Chemotaxis, Leukocyte , Immunity, Innate , Neutrophils , Staphylococcal Infections/microbiology
7.
Viruses ; 15(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37515150

ABSTRACT

Respiratory pathogens such as influenza and SARS-CoV-2 can cause severe lung infections leading to acute respiratory distress syndrome (ARDS). The pathophysiology of ARDS includes an excessive host immune response, lung epithelial and endothelial cell death and loss of the epithelial and endothelial barrier integrity, culminating in pulmonary oedema and respiratory failure. Traditional approaches for the treatment of respiratory infections include drugs that exert direct anti-pathogen effects (e.g., antivirals). However, such agents are typically ineffective or insufficient after the development of ARDS. Modulation of the host response has emerged as a promising alternative therapeutic approach to mitigate damage to the host for the treatment of respiratory infections; in principle, this strategy should also be less susceptible to the development of pathogen resistance. In this review, we discuss different host-targeting strategies against pathogen-induced ARDS. Developing therapeutics that enhance the host response is a pathogen-agnostic approach that will help prepare for the next pandemic.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Lung , Respiratory Distress Syndrome/therapy , Immunity
8.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L135-L142, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37310768

ABSTRACT

In acute lung injury, the lung endothelial barrier is compromised. Loss of endothelial barrier integrity occurs in association with decreased levels of the tight junction protein claudin-5. Restoration of their levels by gene transfection may improve the vascular barrier, but how to limit transfection solely to regions of the lung that are injured is unknown. We hypothesized that thoracic ultrasound in combination with intravenous microbubbles (USMBs) could be used to achieve regional gene transfection in injured lung regions and improve endothelial barrier function. Since air blocks ultrasound energy, insonation of the lung is only achieved in areas of lung injury (edema and atelectasis); healthy lung is spared. Cavitation of the microbubbles achieves local tissue transfection. Here we demonstrate successful USMB-mediated gene transfection in the injured lungs of mice. After thoracic insonation, transfection was confined to the lung and only occurred in the setting of injured (but not healthy) lung. In a mouse model of acute lung injury, we observed downregulation of endogenous claudin-5 and an acute improvement in lung vascular leakage and in oxygenation after claudin-5 overexpression by transfection. The improvement occurred without any impairment of the immune response as measured by pathogen clearance, alveolar cytokines, and lung histology. In conclusion, USMB-mediated transfection targets injured lung regions and is a novel approach to the treatment of lung injury.NEW & NOTEWORTHY Acute respiratory distress syndrome is characterized by spatial heterogeneity, with severely injured lung regions adjacent to relatively normal areas. This makes targeting treatment to the injured regions difficult. Here we use thoracic ultrasound and intravenous microbubbles (USMBs) to direct gene transfection specifically to injured lung regions. Transfection of the tight junction protein claudin-5 improved oxygenation and decreased vascular leakage without impairing innate immunity. These findings suggest that USMB is a novel treatment for ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/pathology , Claudin-5/genetics , Claudin-5/metabolism , Immunity, Innate , Lung/metabolism , Respiratory Distress Syndrome/pathology , Tight Junction Proteins/metabolism , Tight Junctions/metabolism , Transfection , Ultrasonography, Interventional
10.
Curr Atheroscler Rep ; 25(8): 457-465, 2023 08.
Article in English | MEDLINE | ID: mdl-37358804

ABSTRACT

PURPOSE OF REVIEW: The accumulation of LDL in the arterial intima is an initiating event in atherosclerosis. After decades of controversy, it is now clear that transcytosis of LDL across an intact endothelial monolayer contributes to its intimal deposition. We review recent observations in this field and address the question of whether LDL transcytosis can be manipulated therapeutically. RECENT FINDINGS: The development of a live-cell imaging method for studying transcytosis using total internal reflection fluorescence (TIRF) microscopy has catalyzed recent discoveries. LDL transcytosis is mediated by SR-BI and ALK1. Estrogen down-regulates SR-BI and inhibits LDL transcytosis, while the nuclear structural protein HMGB1 promotes LDL transcytosis. LDL transcytosis by ALK1 is independent of the receptor's kinase activity and is antagonized by BMP9, ALK1's canonical ligand. Inflammation stimulates LDL transcytosis. Identifying the function and mechanisms of LDL transcytosis may ultimately permit its therapeutic manipulation.


Subject(s)
Atherosclerosis , Lipoproteins, LDL , Humans , Lipoproteins, LDL/metabolism , Endothelial Cells/metabolism , Transcytosis , Atherosclerosis/metabolism , Endothelium, Vascular/metabolism
11.
Front Immunol ; 14: 1181016, 2023.
Article in English | MEDLINE | ID: mdl-37153544

ABSTRACT

Atypical chemokine receptor-1 (ACKR1), previously known as the Duffy antigen receptor for chemokines, is a widely conserved cell surface protein that is expressed on erythrocytes and the endothelium of post-capillary venules. In addition to being the receptor for the parasite causing malaria, ACKR1 has been postulated to regulate innate immunity by displaying and trafficking chemokines. Intriguingly, a common mutation in its promoter leads to loss of the erythrocyte protein but leaves endothelial expression unaffected. Study of endothelial ACKR1 has been limited by the rapid down-regulation of both transcript and protein when endothelial cells are extracted and cultured from tissue. Thus, to date the study of endothelial ACKR1 has been limited to heterologous over-expression models or the use of transgenic mice. Here we report that exposure to whole blood induces ACKR1 mRNA and protein expression in cultured primary human lung microvascular endothelial cells. We found that contact with neutrophils is required for this effect. We show that NF-κB regulates ACKR1 expression and that upon removal of blood, the protein is rapidly secreted by extracellular vesicles. Finally, we confirm that endogenous ACKR1 does not signal upon stimulation with IL-8 or CXCL1. Our observations define a simple method for inducing endogenous endothelial ACKR1 protein that will facilitate further functional studies.


Subject(s)
Endothelial Cells , Extracellular Vesicles , Animals , Humans , Mice , Chemokines/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Extracellular Vesicles/metabolism , Neutrophils/metabolism
12.
bioRxiv ; 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37162986

ABSTRACT

Rationale: Extracellular vesicles (EVs) contain bioactive cargo including microRNAs (miRNAs) and proteins that are released by cells as a form of cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels and thereby interface with cells in the circulation as well as cells residing in the vascular wall. It is unknown whether ECs have the capacity to release EVs capable of governing recipient cells within two separate compartments, and how this is affected by endothelial activation commonly seen in atheroprone regions. Objective: Given their boundary location, we propose that ECs utilize bidirectional release of distinct EV cargo in quiescent and activated states to communicate with cells within the circulation and blood vessel wall. Methods and Results: EVs were isolated from primary human aortic endothelial cells (ECs) (+/-IL-1ß activation), quantified, and analysed by miRNA transcriptomics and proteomics. Compared to quiescent ECs, activated ECs increased EV release, with miRNA and protein cargo that were related to atherosclerosis. RNA sequencing of EV-treated monocytes and smooth muscle cells (SMCs) revealed that EVs from activated ECs altered pathways that were pro-inflammatory and atherogenic. Apical and basolateral EV release was assessed using ECs on transwells. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined that compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and SMCs, respectively. Conclusions: The demonstration that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance our ability to design endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.

13.
Pharmaceutics ; 14(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36432707

ABSTRACT

Targeted drug and gene delivery using ultrasound and microbubbles (USMB) has the potential to treat several diseases. In vitro investigation of USMB-mediated delivery is of prime importance prior to in vivo studies because it is cost-efficient and allows for the rapid optimization of experimental parameters. Most in vitro USMB studies are carried out with non-clinical, research-grade ultrasound systems, which are not approved for clinical use and are difficult to replicate by other labs. A standardized, low-cost, and easy-to-use in vitro experimental setup using a clinical ultrasound system would facilitate the eventual translation of the technology to the bedside. In this paper, we report a modular 3D-printed experimental setup using a clinical ultrasound transducer that can be used to study USMB-mediated drug delivery. We demonstrate its utility for optimizing various cargo delivery parameters in the HEK293 cell line, as well as for the CMT167 lung carcinoma cell line, using dextran as a model drug. We found that the proportion of dextran-positive cells increases with increasing mechanical index and ultrasound treatment time and decreases with increasing pulse interval (PI). We also observed that dextran delivery is most efficient for a narrow range of microbubble concentrations.

14.
J Lipid Res ; 63(9): 100256, 2022 09.
Article in English | MEDLINE | ID: mdl-35921881

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Acylation , Acyltransferases/metabolism , Alkynes , Azetidines , Coenzyme A/metabolism , Cysteine , Fatty Acid Synthase, Type I/metabolism , Humans , Myristates , Nitriles , Palmitates , Pyrazoles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Stearates
15.
Methods Mol Biol ; 2440: 115-124, 2022.
Article in English | MEDLINE | ID: mdl-35218536

ABSTRACT

Apical-to-basal transcytosis by endothelial cells can be visualized and quantified using total internal reflection fluorescence (TIRF) microscopy of the basal membrane. Past techniques to study transcytosis including electron microscopy and transwells have several limitations such as confounding from paracellular leakage, low transfection efficiency, and the largely descriptive nature of electron microscopy. After the addition of a fluorescent ligand to the apical endothelial surface, using TIRF to measure exocytosis at the basal membrane bypasses these issues by studying transcytosis across a single cell of a confluent endothelial monolayer in real time. A major benefit of TIRF is that only a small volume of the cell is illuminated, thus greatly reducing background noise from the overlying cytosol in the images. This protocol outlines the steps to image and quantify exocytosis of apically applied fluorophore-tagged low-density lipoprotein (LDL) using TIRF microscopy and MATLAB. A similar approach can be used to study endothelial transcytosis of other ligands such as albumin or high-density lipoprotein.


Subject(s)
Endothelial Cells , Transcytosis , Exocytosis , Lipoproteins, LDL , Microscopy, Fluorescence/methods
16.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-35058252

ABSTRACT

BACKGROUND: Cigarette smokers are at increased risk of acquiring influenza, developing severe disease and requiring hospitalisation/intensive care unit admission following infection. However, immune mechanisms underlying this predisposition are incompletely understood, and therapeutic strategies for influenza are limited. METHODS: We used a mouse model of concurrent cigarette smoke exposure and H1N1 influenza infection, colony-stimulating factor (CSF)3 supplementation/receptor (CSF3R) blockade and single-cell RNA sequencing (scRNAseq) to investigate this relationship. RESULTS: Cigarette smoke exposure exacerbated features of viral pneumonia such as oedema, hypoxaemia and pulmonary neutrophilia. Smoke-exposed infected mice demonstrated an increase in viral (v)RNA, but not replication-competent viral particles, relative to infection-only controls. Interstitial rather than airspace neutrophilia positively predicted morbidity in smoke-exposed infected mice. Screening of pulmonary cytokines using a novel dysregulation score identified an exacerbated expression of CSF3 and interleukin-6 in the context of smoke exposure and influenza. Recombinant (r)CSF3 supplementation during influenza aggravated morbidity, hypothermia and oedema, while anti-CSF3R treatment of smoke-exposed infected mice improved alveolar-capillary barrier function. scRNAseq delineated a shift in the distribution of Csf3 + cells towards neutrophils in the context of cigarette smoke and influenza. However, although smoke-exposed lungs were enriched for infected, highly activated neutrophils, gene signatures of these cells largely reflected an exacerbated form of typical influenza with select unique regulatory features. CONCLUSION: This work provides novel insight into the mechanisms by which cigarette smoke exacerbates influenza infection, unveiling potential therapeutic targets (e.g. excess vRNA accumulation, oedematous CSF3R signalling) for use in this context, and potential limitations for clinical rCSF3 therapy during viral infectious disease.


Subject(s)
Cigarette Smoking , Influenza A Virus, H1N1 Subtype , Influenza, Human , Animals , Cigarette Smoking/adverse effects , Humans , Lung/metabolism , Mice , Mice, Inbred C57BL , Neutrophils , Nicotiana
17.
Biomedicines ; 9(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34356867

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by increased permeability of the alveolar-capillary membrane, a thin barrier composed of adjacent monolayers of alveolar epithelial and lung microvascular endothelial cells. This results in pulmonary edema and severe hypoxemia and is a common cause of death after both viral (e.g., SARS-CoV-2) and bacterial pneumonia. The involvement of the lung in ARDS is notoriously heterogeneous, with consolidated and edematous lung abutting aerated, less injured regions. This makes treatment difficult, as most therapeutic approaches preferentially affect the normal lung regions or are distributed indiscriminately to other organs. In this review, we describe the use of thoracic ultrasound and microbubbles (USMB) to deliver therapeutic cargo (drugs, genes) preferentially to severely injured areas of the lung and in particular to the lung endothelium. While USMB has been explored in other organs, it has been under-appreciated in the treatment of lung injury since ultrasound energy is scattered by air. However, this limitation can be harnessed to direct therapy specifically to severely injured lungs. We explore the cellular mechanisms governing USMB and describe various permutations of cargo administration. Lastly, we discuss both the challenges and potential opportunities presented by USMB in the lung as a tool for both therapy and research.

18.
Circ Res ; 128(4): 530-543, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33397122

ABSTRACT

RATIONALE: Bone marrow transplantation (BMT) is used frequently to study the role of hematopoietic cells in atherosclerosis, but aortic arch lesions are smaller in mice after BMT. OBJECTIVE: To identify the earliest stage of atherosclerosis inhibited by BMT and elucidate potential mechanisms. METHODS AND RESULTS: Ldlr-/- mice underwent total body γ-irradiation, bone marrow reconstitution, and 6-week recovery. Atherosclerosis was studied in the ascending aortic arch and compared with mice without BMT. In BMT mice, neutral lipid and myeloid cell topography were lower in lesions after feeding a cholesterol-rich diet for 3, 6, and 12 weeks. Lesion coalescence and height were suppressed dramatically in mice post-BMT, whereas lateral growth was inhibited minimally. Targeted radiation to the upper thorax alone reproduced the BMT phenotype. Classical monocyte recruitment, intimal myeloid cell proliferation, and apoptosis did not account for the post-BMT phenotype. Neutral lipid accumulation was reduced in 5-day lesions, thus we developed quantitative assays for LDL (low-density lipoprotein) accumulation and paracellular leakage using DiI-labeled human LDL and rhodamine B-labeled 70 kD dextran. LDL accumulation was dramatically higher in the intima of Ldlr-/- relative to Ldlr+/+ mice, and was inhibited by injection of HDL mimics, suggesting a regulated process. LDL, but not dextran, accumulation was lower in mice post-BMT both at baseline and in 5-day lesions. Since the transcript abundance of molecules implicated in LDL transcytosis was not significantly different in the post-BMT intima, transcriptomics from whole aortic arch intima, and at single-cell resolution, was performed to give insights into pathways modulated by BMT. CONCLUSIONS: Radiation exposure inhibits LDL entry into the aortic intima at baseline and the earliest stages of atherosclerosis. Single-cell transcriptomic analysis suggests that LDL uptake by endothelial cells is diverted to lysosomal degradation and reverse cholesterol transport pathways. This reduces intimal accumulation of lipid and impacts lesion initiation and growth.


Subject(s)
Atherosclerosis/metabolism , Gamma Rays , Lipoproteins, LDL/metabolism , Tunica Intima/radiation effects , Animals , Aorta/metabolism , Aorta/radiation effects , Mice , Mice, Inbred C57BL , Receptors, LDL/deficiency , Receptors, LDL/genetics , Transcriptome , Tunica Intima/metabolism
19.
Viruses ; 13(2)2021 01 22.
Article in English | MEDLINE | ID: mdl-33499234

ABSTRACT

Respiratory viruses such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a constant threat to public health given their ability to cause global pandemics. Infection with either virus may lead to aberrant host responses, such as excessive immune cell recruitment and activation, dysregulated inflammation, and coagulopathy. These may contribute to the development of lung edema and respiratory failure. An increasing amount of evidence suggests that lung endothelial cells play a critical role in the pathogenesis of both viruses. In this review, we discuss how infection with influenza or SARS-CoV-2 may induce endothelial dysfunction. We compare the effects of infection of these two viruses, how they may contribute to pathogenesis, and discuss the implications for potential treatment. Understanding the differences between the effects of these two viruses on lung endothelial cells will provide important insight to guide the development of therapeutics.


Subject(s)
Alphainfluenzavirus/pathogenicity , Endothelium/virology , Lung Injury/pathology , Lung Injury/virology , SARS-CoV-2/pathogenicity , Blood Platelets/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium/metabolism , Endothelium/pathology , Extracellular Traps/immunology , Humans , Intercellular Junctions/pathology , Lung Injury/therapy
20.
Arterioscler Thromb Vasc Biol ; 41(1): 200-216, 2021 01.
Article in English | MEDLINE | ID: mdl-33054399

ABSTRACT

OBJECTIVE: LDL (low-density lipoprotein) transcytosis across the endothelium is performed by the SR-BI (scavenger receptor class B type 1) receptor and contributes to atherosclerosis. HMGB1 (high mobility group box 1) is a structural protein in the nucleus that is released by cells during inflammation; extracellular HMGB1 has been implicated in advanced disease. Whether intracellular HMGB1 regulates LDL transcytosis through its nuclear functions is unknown. Approach and Results: HMGB1 was depleted by siRNA in human coronary artery endothelial cells, and transcytosis of LDL was measured by total internal reflection fluorescence microscopy. Knockdown of HMGB1 attenuated LDL transcytosis without affecting albumin transcytosis. Loss of HMGB1 resulted in reduction in SR-BI levels and depletion of SREBP2 (sterol regulatory element-binding protein 2)-a transcription factor upstream of SR-BI. The effect of HMGB1 depletion on LDL transcytosis required SR-BI and SREBP2. Overexpression of HMGB1 caused an increase in LDL transcytosis that was unaffected by inhibition of extracellular HMGB1 or depletion of RAGE (receptor for advanced glycation endproducts)-a cell surface receptor for HMGB1. The effect of HMGB1 overexpression on LDL transcytosis was prevented by knockdown of SREBP2. Loss of HMGB1 caused a reduction in the half-life of SREBP2; incubation with LDL caused a significant increase in nuclear localization of HMGB1 that was dependent on SR-BI. Animals lacking endothelial HMGB1 exhibited less acute accumulation of LDL in the aorta 30 minutes after injection and when fed a high-fat diet developed fewer fatty streaks and less atherosclerosis. CONCLUSIONS: Endothelial HMGB1 regulates LDL transcytosis by prolonging the half-life of SREBP2, enhancing SR-BI expression. Translocation of HMGB1 to the nucleus in response to LDL requires SR-BI.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , HMGB1 Protein/metabolism , Receptors, LDL/metabolism , Scavenger Receptors, Class B/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Transcytosis , Active Transport, Cell Nucleus , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Cells, Cultured , Disease Models, Animal , Female , HMGB1 Protein/deficiency , HMGB1 Protein/genetics , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Protein Stability , Receptors, LDL/genetics , Scavenger Receptors, Class B/genetics , Signal Transduction , Sterol Regulatory Element Binding Protein 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...