Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Inst Mech Eng H ; 226(10): 776-86, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23157079

ABSTRACT

Stiffness and contracture of the periarticular tissues are common complications of a post-traumatic elbow. Arthrodiatasis is a surgical technique that uses an external fixator for initial immobilization and subsequent distraction. The two prerequisites for an ideal arthrodiatasis are concentric distraction (avoiding bony contact) and hinge alignment (reducing internal stress). This study used the finite element (FE) method to clarify the relationship between these two prerequisites and the initial conditions (pin placement, elbow angle, and distraction mode). A total of 12 variations of the initial conditions were symmetrically arranged to evaluate their biomechanical influence on concentric distraction and hinge alignment. The humeroulnar surface was hypothesized to be ideally distracted orthogonal to the line joining the tips of the olecranon and the coronoid. The eccentric separation of the humeroulnar surfaces is a response to the non-orthogonality of the distracting force and joining line. Pin placement significantly affects the effective moment arm of the fixing pins to distract the bridged elbow. Both elbow angle and distraction mode directly alter the direction of the distracting force at the elbow center. In general, the hinges misalignment occurs in a direction opposite to the distraction-activated site. After joint distraction, the elastic deflection of the fixing pins inevitably makes both elbow and fixator hinges to misalign. This indicates that both joint distraction and hinge alignment are the interactive mechanisms. The humeroulnar separation is more concentric in the situation of the 120 degrees humeral distraction by using stiffer pins with convergent placement. Even so, the eccentric displacement of the elbow hinge is a crucial consideration in the initial placement of the guiding pin to compensate for hinge misalignment.


Subject(s)
Bone Nails , Bone Plates , Elbow Joint/physiopathology , Elbow Joint/surgery , Internal Fixators , Models, Biological , Osteogenesis, Distraction/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Failure Analysis , Finite Element Analysis , Humans , Prosthesis Design , Range of Motion, Articular
2.
J Biomech ; 43(4): 757-63, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20106480

ABSTRACT

Joint distraction and mobilization with a hinged external fixator preserves elbow stability and mobility. However, the alignment of both elbow and fixator hinges was the initial prerequisite of the arthrodiatasis technique. The main goal of this study was to numerically evaluate the kinematic influence of the device, surgery, and joint factors on hinge alignment. The kinetic effects of the pins placement and elbow angle on concentric distraction and mobilization were also discussed. A unilaterally hinged elbow-fixator system with a 14 links and 10 degrees-of-freedom was instrumented into a humeroulnar model. The Denavit-Hartenberg method with the homogeneous transformation matrixes was applied to perform kinematic analysis of the linkage system. The predicted results revealed that the concurrence of hinge alignment (i.e., kinematic) and concentric distraction (i.e., kinetic) necessitates two telescopic tubes orthogonal to the elbow hinge. The degrees-of-freedom arrangement of the fixator articulators plays a significant role in hinge alignment. After joint distraction, two hinges might be misaligned due to the difference in the structural rigidity of the pins, fixator, and stiffened elbow. Furthermore, those two prerequisite are interactive and sensitive to elbow angle, fixator design, and pin placement of the bridged elbow-pin-fixator construct. In addition, the ideally concentric distraction might occur only at an elbow angle of 120 degrees owing to the ulnar anatomy. Meticulous planning is necessary for such highly technically demanding surgery.


Subject(s)
Bone Nails , Elbow Joint/physiopathology , Elbow Joint/surgery , External Fixators , Joint Instability/physiopathology , Joint Instability/surgery , Models, Biological , Osteogenesis, Distraction/instrumentation , Prosthesis Implantation/methods , Computer Simulation , Humans , Surgery, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...