Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
FASEB J ; 37(10): e23162, 2023 10.
Article in English | MEDLINE | ID: mdl-37682220

ABSTRACT

Aerolysin-like pore-forming protein (af-PFP) superfamily members are double-edge swords that assist the bacterial infection but shied bacteria from the host by various mechanisms in some species including the toad Bombina maxima and zebrafish. While members of this family are widely expressed in all kingdoms, especially non-bacteria species, it remains unclear whether their anti-bacterial function is conserved. LIN-24 is an af-PFP that is constitutively expressed throughout the Caenorhabditis elegans lifespan. Here, we observed that LIN-24 knockdown reduced the maximum lifespan of worms. RNA-seq analysis identified 323 differentially expressed genes (DEGs) post-LIN-24 knockdown that were enriched in "immune response" and "lysosome pathway," suggesting a possible role for LIN-24 in resisting microbial infection. In line with this, we found that Pseudomonas aeruginosa 14 (PA14) infection induced LIN-24 expression, and that survival after PA14 infection was significantly reduced by LIN-24 knockdown. In contrast, LIN-24 overexpression (LIN-24-OE) conferred protection against PA14 infection, with worms showing longer survival time and reduced bacterial load. Weighted gene co-expression network analysis of LIN-24-OE worms showed that the highest correlation module was enriched in factors related to immunity and the defense response. Finally, by predicting transcription factors from RNA-seq data and knocking down candidate transcription factors in LIN-24-OE worms, we revealed that LIN-24 may protect worms against bacterial infection by stimulating DAF-16-mediated immune responses. These findings agree with our previous studies showing an anti-microbial role for the amphibian-derived af-PFP complex ßγ-CAT, suggesting that af-PFPs may play a conserved role in combatting microbial infections. Further research is needed to determine the roles this protein family plays in other physio-pathological processes, such as metabolism, longevity, and aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Aging , Caenorhabditis elegans/genetics , Longevity , Caenorhabditis elegans Proteins/genetics
3.
J Biol Chem ; 299(6): 104717, 2023 06.
Article in English | MEDLINE | ID: mdl-37068610

ABSTRACT

Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. ßγ-CAT, a complex of pore-forming protein BmALP1 (two ßγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intracellular or extracellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the ßγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for ßγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the ßγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of ßγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a pore-forming protein machine evolved to drive cell vesicular delivery and transport.


Subject(s)
Crystallins , Peptides , Animals , Peptides/metabolism , Skin/metabolism , Anura/metabolism , Crystallins/metabolism , Porins/metabolism , Immunoglobulin G/metabolism
4.
Toxins (Basel) ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36977082

ABSTRACT

Toxin-like proteins and peptides of skin secretions from amphibians play important physiological and pathological roles in amphibians. ßγ-CAT is a Chinese red-belly toad-derived pore-forming toxin-like protein complex that consists of aerolysin domain, crystalline domain, and trefoil factor domain and induces various toxic effects via its membrane perforation process, including membrane binding, oligomerization, and endocytosis. Here, we observed the death of mouse hippocampal neuronal cells induced by ßγ-CAT at a concentration of 5 nM. Subsequent studies showed that the death of hippocampal neuronal cells was accompanied by the activation of Gasdermin E and caspase-1, suggesting that ßγ-CAT induces the pyroptosis of hippocampal neuronal cells. Further molecular mechanism studies revealed that the pyroptosis induced by ßγ-CAT is dependent on the oligomerization and endocytosis of ßγ-CAT. It is well known that the damage of hippocampal neuronal cells leads to the cognitive attenuation of animals. The impaired cognitive ability of mice was observed after intraperitoneal injection with 10 µg/kg ßγ-CAT in a water maze assay. Taken together, these findings reveal a previously unknown toxicological function of a vertebrate-derived pore-forming toxin-like protein in the nerve system, which triggers the pyroptosis of hippocampal neuronal cells, ultimately leading to hippocampal cognitive attenuation.


Subject(s)
Amphibian Proteins , Anura , Neurons , Pyroptosis , Animals , Mice , Anura/metabolism , Cognition , Peptides/chemistry , Amphibian Proteins/toxicity , Hippocampus/cytology , Hippocampus/drug effects , Neurons/drug effects
5.
Adv Healthc Mater ; 12(15): e2202432, 2023 06.
Article in English | MEDLINE | ID: mdl-36745880

ABSTRACT

Aerobic vaginitis (AV) is a gynecological disease associated with vaginal flora imbalance. The nonselective bactericidal nature of antibiotics and low customization rate of probiotic supplementation in existing treatments lead to AV recurrence. Here, a drug delivery strategy is proposed that works with the changing dynamics of the bacterial flora. In particular, a core-shell nanogel (CSNG) is designed to encapsulate prebiotic inulin and antimicrobial peptide Cath 30. The proposed strategy allows for the sequential release of both drugs using gelatinase produced by AV pathogenic bacteria, initially selectively killing pathogenic bacteria and subsequently promoting the proliferation of beneficial bacteria in the vagina. In a simulated infection environment in vitro, the outer layer of CSNGs, Cath 30 is rapidly degraded and potently killed the pathogenic bacterium Staphylococcus aureus at 2-6 h. CSNGs enhances proliferation of the beneficial bacterium Lactobacillus crispatus by more than 50% at 24 h. In a rat AV model, the drug delivery strategy precisely regulated the bacterial microenvironment while controlling the inflammatory response of the vaginal microenvironment. This new treatment approach, configured on demand and precisely controlled, offers a new strategy for the treatment of vaginal diseases.


Subject(s)
Vaginitis , Vaginosis, Bacterial , Female , Humans , Animals , Rats , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology , Nanogels , Vaginitis/drug therapy , Vaginitis/microbiology , Vagina , Bacteria , Bacteria, Aerobic , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Sterilization
6.
J Immunol Methods ; 509: 113343, 2022 10.
Article in English | MEDLINE | ID: mdl-36029800

ABSTRACT

Lipopolysaccharide (LPS) is a major pathogen-associated pattern molecule that can initiate lethal sepsis. Bioactive peptides in amphibian skin secretions, especially antimicrobial peptides, are essential components of the host immune system and help fight the microbial invasion. In this study, two peptides: peptide 1 (KINRKGPRPPG) and peptide 2 (INRKGPRPPG) were isolated, from skin secretions of the Chinese red belly frog (Bombina maxima). After stimulation with LPS, peptide 1 showed direct LPS-binding activity, low cytotoxicity, immunoregulatory functions in vitro, and neutralizing LPS effects in animal models. Thus, natural peptide 1 exhibits potential as an ideal candidate against LPS.


Subject(s)
Anura , Lipopolysaccharides , Amino Acid Sequence , Animals , Anura/genetics , Base Sequence , Cloning, Molecular , Kinins , Lipopolysaccharides/pharmacology , Neuropeptides , Peptides/chemistry , Skin
8.
J Immunol Methods ; 508: 113322, 2022 09.
Article in English | MEDLINE | ID: mdl-35843266

ABSTRACT

Elucidation of the function of gamma delta T cells (γδ T cells) requires robust models that show how γδ T cells are commonly involved in inflammation, since very little is known about the factors that promote and control their development and function. There are few studies of murine γδ T cells primarily because these cells have proven difficult to isolate, expand and characterize. Here, we describe a simple method that utilizes key expansion elements to isolate and expand murine CD4-CD8-CD3+ γδ T cells typically found in secondary lymphoid tissues. Expansion of γδ T cells reached 150-fold by day 8 of culture, depended on exogenous IL-2, αCD3, and αCD28, and supported efficient and reproducible in vitro differentiation. These studies showed high production of cytokines IFNγ and Granzyme B, with the novel finding of IL-24 upregulation as well. Expression analysis of expanded γδ T cells, after treatment with IL-2, revealed high levels of Granzyme B, Granzyme D, and IFNγ. Lactate dehydrogenase (LDH) cytotoxicity assays showed that expanded γδ T cells were effective at inducing >90% cytolysis of murine MC38 colon cancer, E0771 breast cancer, and B16 melanoma cells at 10:1 effector to target ratios. These findings indicated that murine γδ T cells can be successfully isolated, expanded, and used to perform preclinical therapy studies.


Subject(s)
Interleukin-2 , Receptors, Antigen, T-Cell, gamma-delta , Animals , Cell Line, Tumor , Granzymes/metabolism , Interleukin-2/pharmacology , Mice , Spleen/metabolism , T-Lymphocytes/metabolism
9.
J Med Microbiol ; 71(6)2022 Jun.
Article in English | MEDLINE | ID: mdl-35737512

ABSTRACT

Introduction. Osteoporosis (OP) is characterized by microstructural degeneration of bone tissue, low bone mass, bone fragility and even brittle fracture (osteoporotic fracture, OPF). OP and OPF are common and there are many disadvantages to the current medications for OP/OPF. Osteoking is a traditional Chinese medicine (TCM) originating from the Yi nationality (Yunnan, China) that has been used to treat bone diseases for decades.Hypothesis/Gap Statement. This study will reveal the changes in the intestinal microbiota of OP rats after 70 days of osteoking treatment.Method. With duplication of sham and OP rats, eight groups were established, with six rats in each group. The intestinal microbiotas were analysed by 16S rDNA sequencing.Results. The results showed that osteoking changed the intestinal microbiota of sham rats and OP rats. The mechanism by which osteoking improves OP is related to the functions of the intestinal microbiota. After 70 days of treatment with osteoking, the contents of Pseudonocardia, Pedomicrobium, Variovorax, Niastella and Actinosynnema were decreased in OP rats. The functions of the above intestinal microbiota related to iron metabolism affected calcifediol and 25(OH)D, and measuring these bone metabolic indicators is required for further study.Conclusion. Osteoking changes the intestinal microbiota to improve OP, and further study which reveals these intestinal microbiota and mechanism is needed.


Subject(s)
Drugs, Chinese Herbal , Osteoporosis , Animals , China , DNA, Ribosomal/genetics , Drugs, Chinese Herbal/therapeutic use , Osteoporosis/drug therapy , Rats
10.
J Immunol ; 207(3): 888-901, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34290105

ABSTRACT

Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that ßγ-crystallin fused aerolysin-like protein and trefoil factor complex (ßγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. ßγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, ßγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the ßγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that ßγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the ßγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of ßγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that ßγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.


Subject(s)
Amphibian Proteins/metabolism , Antiviral Agents/metabolism , Cornea/pathology , Herpes Simplex/immunology , Herpesvirus 1, Human/physiology , Multiprotein Complexes/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Trefoil Factors/metabolism , Amphibian Proteins/genetics , Animals , Anura , Bacterial Toxins/genetics , Cornea/virology , Female , HeLa Cells , Host-Pathogen Interactions , Humans , Mice , Microscopy, Electron, Transmission , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Viral Envelope/metabolism , Viral Envelope/ultrastructure , Virus Internalization , gamma-Crystallins/chemistry
11.
Int J Nanomedicine ; 16: 4769-4780, 2021.
Article in English | MEDLINE | ID: mdl-34285482

ABSTRACT

BACKGROUND: The treatment of Staphylococcus aureus (S. aureus)-infected wounds is difficult. It causes extreme pain to tens of thousands of patients and increases the cost of medical care. The antimicrobial peptide OH-CATH30 (OH30) has a good killing activity against S. aureus and can play a role in accelerating wound healing and immune regulation. Therefore, it shows great potential for wound healing. PURPOSE: The aim of this study was to overcome the short half-life and easy enzymolysis of OH30 by using graphene oxide conjugated with polyethylene glycol to load OH30 (denoted as PGO-OH30), as well as to evaluate its effect on wounds infected by S. aureus. METHODS: PGO-OH30 nanoparticles were prepared by π-π conjugation and characterized. Their cell cytotoxicity, cell migration, infectious full-thickness dermotomy models, and histopathology were evaluated. RESULTS: Characterization and cytotoxicity experiments revealed that the PGO-OH30 drug-delivery system had good biocompatibility and excellent drug-delivery ability. Cell-migration experiments showed that PGO-OH30 could promote the migration of human immortalized keratinocytes (HaCaT) cells compared with the control group (P<0.05). In a mouse model of skin wound infection, PGO-OH30 accelerated skin-wound healing and reduced the amount of S. aureus in wounds compared with the control group (P<0.05). In particular, on day 7, the number of S. aureus was 100 times lower in the PGO-OH30 group than in the control group. CONCLUSION: The PGO-OH30 drug-delivery system had good biocompatibility and excellent drug-delivery ability, indicating its good therapeutic effect on a skin wound-infection model.


Subject(s)
Staphylococcus aureus , Wound Infection , Animals , Graphite , Humans , Mice , Peptides , Polyethylene Glycols , Skin , Wound Healing , Wound Infection/drug therapy
12.
Biosci Microbiota Food Health ; 40(3): 156-167, 2021.
Article in English | MEDLINE | ID: mdl-34285861

ABSTRACT

This study aimed to reveal the differences in intestinal microbes in osteoporotic rats. The rats were divided into two groups: the control and OP (osteoporosis) groups (n=6). Days 0 and 70 were set as the time points. The rats in the OP group underwent bilateral ovariectomy (OVX). Differences between the control and OP groups were determined by 16S rDNA analysis. The relative abundances of OTUs and alpha/beta diversities were determined at days 0 days and 70. The abundances of Verrucomicrobia at the phylum level and Aerococcus, Coprobacillus, Veillonella, Anaerobiospirillum, Flavobacterium, Comamonadaceae, Ohtaekwangia, etc., at the genus level were found to be different between the control_70d and OP_70d groups. KEGG ontology analysis showed that the function of lipid metabolism could be related to OP. The 16S rDNA analysis in the OP rats revealed that intestinal microbes take part in the processes of OP and could affect lipid metabolism. Further study of the relationship between OP and intestinal microbes is necessary, and the prospect for intestinal microbes is a potential treatment for OP.

13.
Biochem Biophys Res Commun ; 550: 107-112, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33689880

ABSTRACT

Lipopolysaccharide (LPS) is a major pathogenic factor in endotoxin shock or sepsis. Most antibiotics have little clinical anti-endotoxin activity, but some antimicrobial peptides (AMPs) have been shown to be effective in blocking LPS. We identified a novel peptide from the skin secretions of Bombina maxima (B. _maxima) by challenging the skin of frogs with an LPS solution. Peptide 2 has an amino acid sequence of LVGKLLKGAVGDVCGLLPIC. Peptide 2 possesses low hemolytic activity, low cytotoxicity against RAW 264.7 cells, and strong anti-inflammatory activity. Moreover, peptide 2 plays an anti-inflammatory role by inhibiting inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). A biolayer interferometry (BLI) assay indicated that peptide 2 binds to LPS with strong affinity and that this interaction has an affinity constant (KD) value of 1.05 × 10-9 M. A survival study showed that peptide 2 possesses potent LPS-neutralizing activity to protect LPS-treated mice from death. In conclusion, we have identified a potent peptide with LPS neutralizing activity, which lays a foundation for future research and development.


Subject(s)
Anura/metabolism , Lipopolysaccharides/antagonists & inhibitors , Peptides/isolation & purification , Peptides/pharmacology , Sepsis/drug therapy , Skin/chemistry , Skin/metabolism , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/toxicity , Cytokines/biosynthesis , Cytokines/genetics , Cytokines/immunology , Drug Evaluation, Preclinical , Hemolysis/drug effects , Humans , Lipopolysaccharides/immunology , Male , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Peptides/toxicity , Protein Binding , RAW 264.7 Cells , RNA, Messenger/genetics , Survival Rate
14.
Allergol Int ; 70(1): 121-128, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32680616

ABSTRACT

BACKGROUND: Allergic reactions have been observed following both direct centipede bites and the clinical use of centipede-containing medicines, such as traditional Chinese medicines utilizing Scolopendra subspinipes mutilans; however, no natural centipede allergen has yet been characterized. METHODS: An allergen was purified from S. s. mutilans venom using Superdex 75 gel filtration and RESOURCE S ion chromatography, and its primary structure was determined via a combination of LC-MS-MS, MALDI-TOF/TOF and protein sequencing techniques. Its potential allergenicity was evaluated by immunoblotting, ELISAs, skin prick tests (SPTs) and mast cell activation assays. RESULTS: A novel allergen Sco m 5 (210 amino acids long) was successfully purified from crude S. s. mutilans venom. Sco m 5 could promote the degranulation of a human mast cell line, HMC-1. Among centipede-allergic patients, Sco m 5 showed an 83.3% IgE-binding frequency and a 66.7% positive reaction frequency, as detected by immunoblotting and SPTs, respectively. Sco m 5 IgE-binding frequencies of common Chinese population was found to be 9%-16%. Sera positive for Sco m 5 IgE-binding was cross-reactive against venom from the wasp Vespa mandaeinia. CONCLUSIONS: The present study isolated and characterized a novel allergen termed as Sco m 5 from the centipede S. s. mutilans. The use of Sco m 5 to identify centipede-allergic individuals could be important, given the high potential allergenicity of Sco m 5 among the general Chinese population, along with the likely possibility of cross-reactivity against wasp venom among centipede-allergic patients.


Subject(s)
Allergens/immunology , Allergens/isolation & purification , Chilopoda/immunology , Allergens/chemistry , Amino Acid Sequence , Animals , Chromatography, Ion Exchange , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Mast Cells/metabolism , Skin Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
15.
Asian J Androl ; 23(1): 109-115, 2021.
Article in English | MEDLINE | ID: mdl-32687069

ABSTRACT

The arachidonic acid (AA) metabolic pathway participates in various physiological processes as well as in the development of malignancies. We analyzed genomic alterations in AA metabolic enzymes in the Cancer Genome Atlas (TCGA) prostate cancer (PCa) dataset and found that the gene encoding soluble epoxide hydrolase (EPHX2) is frequently deleted in PCa. EPHX2 mRNA and protein expression in PCa was examined in multiple datasets by differential gene expression analysis and in a tissue microarray by immunohistochemistry. The expression data were analyzed in conjunction with clinicopathological variables. Both the mRNA and protein expression levels of EPHX2 were significantly decreased in tumors compared with normal prostate tissues and were inversely correlated with the Gleason grade and disease-free survival time. Furthermore, EPHX2 mRNA expression was significantly decreased in metastatic and recurrent PCa compared with localized and primary PCa, respectively. In addition, EPHX2 protein expression correlated negatively with Ki67 expression. In conclusion, EPHX2 deregulation is significantly correlated with the clinical characteristics of PCa progression and may serve as a prognostic marker for PCa.


Subject(s)
Epoxide Hydrolases/metabolism , Prostatic Neoplasms/pathology , Biomarkers , Blotting, Western , Cell Line , Disease Progression , Disease-Free Survival , Humans , Male , Prognosis , Prostate/enzymology , Prostate/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/enzymology , Real-Time Polymerase Chain Reaction
16.
Onco Targets Ther ; 13: 12521-12538, 2020.
Article in English | MEDLINE | ID: mdl-33324071

ABSTRACT

INTRODUCTION: Bladder cancer (BC) is the fourth-commones cancer and the sixth-leading cause of cancer-related death among men. However, a lack of reliable biomarkers remains a problem forprognosis and treatment of BC. lncRNAs have been shown to play important roles in various cancers, and have emerged as promising biomarkers for cancer prognosis and treatment. METHODS: In this study, using univariate and multivariate Cox regression analysis, we examined the differential expression profiles of 1,651 lncRNAs in the TCGA BLCA cohort and created a prognostic gene signature composed of six lncRNAs (for SNHG12, MAFG- DT, ASMTL-AS1, LINC02321, LINC01322, and LINC00922), designed the SMALLL signature. RESULTS: The SMALLL signature displayed significant prognostic power for overall survival for BC patients in multiple cohorts. Gene Ontology analysis showed that genes coexpressed with the SMALLL signature were associated with the extracellular matrix network, and immune cell-infiltration analysis showed that activated naïve B cells, regulatory T cells, M0 macrophages, eosinophils, resting memory CD4 T cells and resting NK cells were significantly different in high- and low-risk groups. We also confirmed differential expression of the lncRNAs of the SMALLL signature in BC tissue and paracancer normal tissue by qRT-PCR analysis. Cell-invasion and -migration experiments showed that MAFG-AS1, ASMTL-AS1, LINC02321, and LINC00922 significantly affected cell invasion and migration. CONCLUSION: Our study revealed that the lncRNA signature is an important predictive factor of prognosis and provides a promising biomarker for BC.

17.
PLoS Negl Trop Dis ; 14(11): e0008873, 2020 11.
Article in English | MEDLINE | ID: mdl-33253321

ABSTRACT

Bungarus multicinctus is the most venomous snake distributed in China and neighboring countries of Myanmar, Laos, north Vietnam and Thailand. The high mortality rate of B. multicinctus envenomation is attributed to the lethal components of α-, ß-, γ- and κ- bungarotoxins contained in the venom. Although anti-B. multicinctus sera were produced in Shanghai, Taiwan and Vietnam, the most widely clinic used product was term as B. multicinctus antivenin and manufactured by Shanghai Serum Bio-technology Co. Ltd. In the present investigation, high purity α-, ß- and γ-bungarotoxins were separately isolated from B. multicinctus crude venom. Rabbit anti- α-, ß- and γ-bungarotoxin antisera were prepared by common methods, respectively. LD50 values of α-, ß- and γ-bungarotoxins were systematically determined via three administration pathways (intraperitoneal, intramuscular and intravenous injections) in Kunming mice. LD50 values of ß-bungarotoxin were closely related with injection routines but those of both α- and γ-bungarotoxins were not dependent on the injection routines. Commercial B. multicinctus antivenin showed strong immunoreaction with high molecular weight fractions of the B. multicinctus but weakly recognized low molecular weight fractions like α- and γ-bungarotoxins. Although B. multicinctus antivenin showed immunoreaction with high molecular weight fractions of Bungarus fasciatus, Naja atra, Ophiophagus hannah venoms but the antivenin only demonstrated animal protection efficacy against O. hannah venom. These results indicated that the high molecular weight fractions of the O. hannah played an important role in venom lethality but those of B. fasciatus and N. atra did not have such a role.


Subject(s)
Antivenins/immunology , Bungarotoxins/immunology , Elapid Venoms/immunology , Immune Sera/immunology , Animals , Bungarotoxins/chemistry , Bungarotoxins/toxicity , Bungarus , China , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Lethal Dose 50 , Male , Mice , Neutralization Tests , Ophiophagus hannah , Rabbits
18.
FASEB J ; 34(10): 13609-13625, 2020 10.
Article in English | MEDLINE | ID: mdl-32786030

ABSTRACT

Bacterial pore-forming toxin aerolysin-like proteins are widely distributed in animals and plants. Emerging evidence supports their roles in host innate immunity, but their direct actions in adaptive immunity remain elusive. In this study, we found that ßγ-CAT, an aerolysin-like protein and trefoil factor complex identified in the frog Bombina maxima, modulated several steps of endocytic pathways during dendritic cell antigen presentation. The protein augmented the antigen uptake of dendritic cells and actively neutralized the acidification of cellular endocytic organelles to favor antigen presentation. In addition, the release of functional exosome-like extracellular vesicles was largely enhanced in the presence of ßγ-CAT. The cellular action of ßγ-CAT increased the number of major histocompatibility complex (MHC) I-ovalbumin and MHC II molecules on dendritic cell surfaces and the released exosome-like extracellular vesicles. An enhanced antigen presentation capacity of dendritic cell for priming of naive T cells was detected in the presence of ßγ-CAT. Collectively, these effects led to strong cytotoxic T lymphocyte responses and antigen-specific antibody responses. Our findings provide evidence that a vertebrate-secreted pore-forming protein can augment antigen presentation by directly modulating cellular endocytic and exocytic pathways, leading to robust activation of adaptive immunity.


Subject(s)
Antigen Presentation/drug effects , Dendritic Cells , Endosomes , Pore Forming Cytotoxic Proteins/pharmacology , T-Lymphocytes , Adaptive Immunity , Animals , Anura/metabolism , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Endosomes/drug effects , Endosomes/immunology , Female , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
19.
J Tradit Chin Med ; 40(3): 422-431, 2020 06.
Article in English | MEDLINE | ID: mdl-32506856

ABSTRACT

OBJECTIVE: To investigate the effectiveness of osteoking, a Traditional Chinese Medicine originating from Yi nationality, against osteoporosis (OP) and osteoporotic fracture (OPF), and to elucidate its mechanism of action. METHODS: An osteoporotic fracture rat model was established; animals were divided into three treatment groups: parathyroid hormone, osteoking and 0.9%NaCl. After 4, 8 and 12 weeks of treatment, serum and bone tissues were collected. Enzyme-linked immuno sorbent assay, x-ray, histopathological evaluation and proteomics were used. Proteomics and GO annotation were performed based on identified peptides. The relative network was obtained from the STRING database and verified by polymerase chain reaction and Western blotting. RESULTS: After osteoking treatment, the bone mineral density (BMD) increased with time in the osteoking group. At week 12, the BMD and bone mineral salt content of the osteoking group were 4.5% and 20.6% higher than those of the negative control group, respectively. Furthermore, the body weight followed the order of positive control group > osteoking group > negative control group, with significant differences among the groups (P < 0.05). Micro-CT analysis of femur sections revealed that the bone surface/volume ratio was significantly higher in the osteoking group than that in the negative control group. X-ray images demonstrated that the osteoking group showed clear callus. Moreover, high-voltage micro-CT demonstrated a massive cortical bone accumulation in the osteoking group. The gray values of callus in the osteoking group were higher than those in the negative group. From week 4 to 12, the serum bone alkaline phosphatase level increased by 49.6% in the osteoking group and the serum propeptide of type Ⅰprocollagen level decreased by 80.6%. Alizarin red staining demonstrated that the calcium deposition in the osteoking group was higher than that in the negative control group. Notably, the expression of Mgp, a key osteogenesis inhibitor, was lower in the osteoking group compared with the negative control group. Moreover, Sparc, bone morphogenetic protein-2 and Bglap expression was higher in the osteoking group through activation of the transforming growth factor-receptor activator of nuclear factor κB Ligand pathway. CONCLUSION: Osteoking treatment increased bone quality and promoted calcium deposition. The results suggest that osteoking inhibits Mgp through the TGF-ß/RANKL pathway to improve OP/OPF.


Subject(s)
Calcium-Binding Proteins/genetics , Drugs, Chinese Herbal/administration & dosage , Extracellular Matrix Proteins/genetics , Osteoporotic Fractures/drug therapy , Osteoporotic Fractures/genetics , Animals , Bone Density/drug effects , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Down-Regulation/drug effects , Extracellular Matrix Proteins/metabolism , Female , Humans , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/physiopathology , Rats , Rats, Sprague-Dawley , Matrix Gla Protein
20.
J Biol Chem ; 295(30): 10293-10306, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32499370

ABSTRACT

Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. ßγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of ßγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of ßγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.


Subject(s)
Amphibian Proteins/chemistry , Disulfides/chemistry , Pore Forming Cytotoxic Proteins/chemistry , Protein Multimerization , Animals , Anura , Oxidation-Reduction , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...