Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30901812

ABSTRACT

Projections of the magnitude and pattern of possible health risks from climate change should be based on multiple climate and development scenarios to describe the range of uncertainties, to inform effective and efficient policies. For a better understanding of climate change-related risks in seven metropolitan cities of South Korea, we estimated temperature-related summer (June to August) mortality until 2100 using projected changes in climate, population, and adaptation. In addition, we extracted the variations in the mortality estimates associated with uncertainties in climate, population, and adaptation scenarios using 25 climate models, two Representative Concentration Pathways (RCP 4.5 and 8.5), three population scenarios (high, medium and low variants), and four adaptation scenarios (absolute threshold shift, slope reduction in the temperature-mortality relationship, a combination of slope reduction and threshold shift, and a sigmoid function based on the historical trend). Compared to the baseline period (1991⁻2015), temperature-attributable mortality in South Korea during summer in the 2090s is projected to increase 5.1 times for RCP 4.5 and 12.9 times for RCP 8.5 due to climate and population changes. Estimated future mortality varies by up to +44%/-55%, -80%, -60%, and +12%/-11% associated with the choice of climate models, adaptation, climate, and population scenarios, respectively, compared to the mortality estimated for the median of the climate models, no adaptation, RCP 8.5, and medium population variant. Health system choices about adaptation are the most important determinants of future mortality after climate projections. The range of possible future mortality underscores the importance of flexible, iterative risk management.


Subject(s)
Acclimatization , Climate Change , Hot Temperature/adverse effects , Mortality/trends , Seasons , Adaptation, Physiological , Cities , Forecasting , Humans , Republic of Korea/epidemiology , Uncertainty
2.
Article in English | MEDLINE | ID: mdl-29690535

ABSTRACT

The Paris Agreement aims to limit the global temperature increase to below 2 °C above pre-industrial levels and to pursue efforts to limit the increase to even below 1.5 °C. Now, it should be asked what benefits are in pursuing these two targets. In this study, we assessed the temperature⁻mortality relationship using a distributed lag non-linear model in seven major cities of South Korea. Then, we projected future temperature-attributable mortality under different Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP) scenarios for those cities. Mortality was projected to increase by 1.53 under the RCP 4.5 (temperature increase by 2.83 °C) and 3.3 under the RCP 8.5 (temperature increase by 5.10 °C) until the 2090s, as compared to baseline (1991⁻2015) mortality. However, future mortality is expected to increase by less than 1.13 and 1.26 if the 1.5 °C and 2 °C increase targets are met, respectively, under the RCP 4.5. Achieving the more ambitious target of 1.5 °C will reduce mortality by 12%, when compared to the 2 °C target. When we estimated future mortality due to both temperature and population changes, the future mortality was found to be increased by 2.07 and 3.85 for the 1.5 °C and 2 °C temperature increases, respectively, under the RCP 4.5. These increases can be attributed to a growing proportion of elderly population, who is more vulnerable to high temperatures. Meeting the target of 1.5 °C will be particularly beneficial for rapidly aging societies, including South Korea.


Subject(s)
Climate Change/statistics & numerical data , Hot Temperature/adverse effects , Mortality/trends , Population Dynamics/statistics & numerical data , Socioeconomic Factors , Cities/statistics & numerical data , Forecasting , Humans , Republic of Korea
3.
Respir Med ; 124: 79-87, 2017 03.
Article in English | MEDLINE | ID: mdl-28284326

ABSTRACT

BACKGROUND: Both air pollution and weather impact hospitalization for respiratory diseases. However, few studies have investigated the contribution of weather to hospitalization related to the adverse effects of air pollution. This study analyzed the effects of particulate matter (PM) on daily respiratory-related hospital admissions, taking into account meteorological factors. METHODS: Daily hospital admissions for respiratory diseases (acute bronchitis, allergic rhinitis, and asthma) between 2007 and 2010 were extracted from the National Health Insurance Corporation, Korea. Patients were divided into three age-based groups (0-15, 16-64, and ≥65 years). PM levels were obtained from 19 monitoring stations in Busan. RESULTS: The mean number of patients admitted for acute bronchitis, allergic rhinitis, and asthma was 5.8 ± 11.9, 4.4 ± 6.1, and 3.3 ± 3.3, respectively. During that time, the daily mean PM10 and PM2.5 concentrations were 49.6 ± 20.5 and 24.2 ± 10.9 µg/m3, respectively. The mean temperature anomaly was 7.0 ± 2.3 °C; the relative humidity was 62.0 ± 18.0%. Hospital admission rates for respiratory diseases increased with increasing PM and temperature, and with decreasing relative humidity. A multivariate analysis including PM, temperature anomaly, relative humidity, and age showed a significant increase in respiratory-related admissions with increasing PM levels and a decreasing relative humidity. Higher PM2.5 levels had a greater effect on respiratory-related hospital admission than did PM10 levels. Children and the elderly were the most susceptible to hospital admission for respiratory disease. CONCLUSIONS: PM levels and meteorological factors impacted hospitalization for respiratory diseases, especially in children and the elderly. The effect of PM on respiratory diseases increased as the relative humidity decreased.


Subject(s)
Hospitalization/statistics & numerical data , Particulate Matter/adverse effects , Respiration Disorders/etiology , Respiratory Tract Diseases/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Air Pollution/adverse effects , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Meteorological Concepts , Middle Aged , Republic of Korea/epidemiology , Respiration Disorders/complications , Respiration Disorders/diagnosis , Respiration Disorders/epidemiology , Respiratory Tract Diseases/complications , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/epidemiology , Temperature , Weather , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...